
http://www.parrot.org
http://www.onyxneon.com

Parrot
Developer’s Guide:

PIR
Parrot is a language-neutral virtual machine for dynamic
languages such as Ruby, Python, PHP, and Perl. It hosts a power-
ful suite of compiler tools tailored to dynamic languages and a
next generation regular expression engine. Its architecture
differs from virtual machines such as the JVM or CLR, with
optimizations for dynamic languages, the use of registers
instead of stacks, and pervasive continuations used for all flow
control.

This book covers Parrot Intermediate Representation (PIR),
Parrot's native low-level language. PIR is fundamentally an
assembly language, but it adds higher-level features such as
operator syntax, syntactic sugar for subroutine and method
calls, automatic register allocation, and more friendly conditional
syntax. Parrot libraries -- including most of Parrot's compiler
tools -- are often written in PIR. Even so, PIR is more rigid and
"close to the machine" than higher-level languages, which makes
it a good window into the inner workings of the virtual machine.

All proceeds from the sale of this book fund the Parrot develop-
ment effort.

Allison Randal,
Andrew Whitworth &
The Parrot Team

Developer’s Guide
Parrot

P
arrot D

eveloper’s G
uide: P

IR

R
andal &

 W
hitw

orth

Parrot
Developer’s Guide

Allison Randal,
Andrew Whitworth &
The Parrot Team

PIR

Parrot Developer’s Guide : PIR
by Allison Randal, Andrew Whitworth, and The Parrot Team

Copyright © 2003­2009, Parrot Foundation

First Edition: June 2009

Published by Onyx Neon Press
www.onyxneon.com

Editor: Shane Warden
Interior and cover design: Allison Randal
Logo design: Devin Muldoon

The Onyx Neon logo is a trademark of Onyx Neon, Inc.

This book was typeset on Ubuntu using the Pod::PsuedoPod::LaTeX
Perl module and LaTeX. Many thanks to the open source developers
who make these and other projects possible.

The Parrot Developer's Guide is distributed under the Artistic License
2.0 (the same license as Parrot). The full text is included in the
documentation for the Parrot project, both in the releases at
http://www.parrot.org/download and in the Subversion repository at
https://svn.parrot.org.

ISBN­13: 978­0­9779201­2­9
ISBN­10: 0­9779201­2­7

Table of Contents

Chapter 1 Introduction 1

Parrot Resources ...2

Parrot Development3

Licensing ...3

Chapter 2 Getting Started 4

Chapter 3 Basic Syntax 6

Comments ...6

Labels ..7

Statements ..7

Directives ...8

Literals ...8

Variables ..9

Constants ..9

Keys ...10

Control Structures10

Subroutines ..11

That's All Folks..11

Chapter 4 Variables 13

Assignment ..13

Working with Numbers14

iii

Working with Strings17

Working with PMCs28

Namespaces ..41

Chapter 5 Control Structures 47

Conditionals and Unconditionals47

If/Else Construct ..49

Switch Construct ..51

Do­While Loop ...52

While Loop ...53

For Loop ..53

Chapter 6 Subroutines 55

Modifiers ..56

Parameters and Arguments57

Compiling and Loading Libraries63

Sub PMC ...64

Evaluating a Code String66

Lexicals ..67

Multiple Dispatch71

Continuations ...74

Coroutines ...76

Native Call Interface78

iv

Chapter 7 Classes and Objects 81

Class Declaration81

Attributes ...82

Methods ...83

Inheritance ...84

Overriding Vtable Functions85

Introspection ..87

Chapter 8 I/O 89

FileHandle Opcodes89

FileHandle Methods91

Chapter 9 Exceptions 96

Throwing Exceptions96

Catching Exceptions97

Exception PMC ..100

ExceptionHandler PMC101

Annotations ..102

Index 104

v

CHAPTER1
Introduction
Parrot is a language-neutral virtual machine for dynamic lan-
guages such as Ruby, Python, PHP, and Perl. It hosts a power-
ful suite of compiler tools tailored to dynamic languages and
a next generation regular expression engine. Its architecture
differs from virtual machines such as the JVM or CLR, with
optimizations for dynamic languages, the use of registers in-
stead of stacks, and pervasive continuations used for all flow
control.

The name “Parrot” was inspired by Monty Python’s Parrot
sketch. As an April Fools’ Day joke in 2001, Simon Coz-
ens published “Programming Parrot”, a fictional interview be-
tween Guido van Rossum and Larry Wall detailing their plans
to merge Python and Perl into a new language called Parrot
(http://www.perl.com/pub/a/2001/04/01/parrot.htm).

Parrot Intermediate Representation (PIR) is Parrot’s na-
tive low-level language. PIR is fundamentally an assembly
language, but it has some higher-level features such as oper-
ator syntax, syntactic sugar for subroutine and method calls,
automatic register allocation, and more friendly conditional
syntax. Parrot libraries—including most of Parrot’s compiler
tools—are often written in PIR. Even so, PIR is more rigid and
“close to the machine” than some higher-level languages like

1

Parrot Developer’s Guide: PIR

C, which makes it a good window into the inner workings of
the virtual machine.

Parrot Resources
The starting point for all things related to Parrot is the main
website http://www.parrot.org/. The site lists additional re-
sources, well as recent news and information about the project.

The Parrot Foundation holds the copyright over Parrot and
helps support its development and community.

Documentation
Parrot includes extensive documentation in the distribution.
The full documentation for the latest release is available on-
line at http://docs.parrot.org/.

Mailing Lists
The primary mailing list for Parrot is parrot-dev.1 If you’re in-
terested in developing Parrot, the parrot-commits and parrot-
tickets lists are useful. More information on the Parrot mailing
lists, as well as subscription options, is available on the mail-
ing list info page http://lists.parrot.org/mailman/listinfo.

The archives for parrot-dev are available on Google Groups
at http://groups.google.com/group/parrot-dev and as NNTP at
nntp://news.gmane.org/gmane.comp.compilers.parrot.devel.

IRC
Parrot developers and users congregate on IRC at #parrot on
the irc://irc.parrot.org server. It’s a good place to ask ques-
tions or discuss Parrot in real time.

1parrot-dev@lists.parrot.org

2

Chapter 1. Introduction

Issue Tracking & Wiki
Parrot developers track bugs, feature requests, and roadmap
tasks at https://trac.parrot.org/, the open source Trac issue tracker.
Users can submit new tickets and track the status of existing
tickets. The site also includes a wiki used in project develop-
ment, a source code browser, and the project roadmap.

Parrot Development
Parrot’s first release occurred in September 2001. The 1.0 re-
lease took place on March 17, 2009. 2009. The Parrot project
makes releases on the third Tuesday of each month. Two re-
leases a year — occuring every January and July — are “sup-
ported” releases intended for production use. The other ten
releases are development releases intended for language im-
plementers and testers.

Development proceeds in cycles around releases. Activity
just before a release focuses on closing tickets, fixing bugs, re-
viewing documentation, and preparing for the release. Imme-
diately after the release, larger changes occur: merging branches,
adding large features, or removing deprecated features. This
allows developers to ensure that changes have sufficient test-
ing time before the next release. These regular releases also
encourage feedback from casual users and testers.

Licensing
The Parrot foundation supports the Parrot development com-
munity and holds trademarks and copyrights to Parrot. The
project is available under the Artistic License 2.0, allowing
free use in commercial and open source/free software contexts.

3

CHAPTER2
Getting Started
The simplest way to install Parrot is to use a pre-compiled bi-
nary for your operating system or distribution. Packages are
available for many systems, including Debian, Ubuntu, Fe-
dora, Mandriva, FreeBSD, Cygwin, and MacPorts. The Par-
rot website lists all known packages.1 A binary installer for
Windows is also available from the Parrot Win32 project on
SourceForge.2 If packages aren’t available on your system,
you can download a source tarball for the latest supported re-
lease from http://www.parrot.org/release/supported.

You need a C compiler and a make utility to build Par-
rot from source code—usually gcc and make, but Parrot can
build with standard compiler toolchains on different operat-
ing systems. Perl 5.8 is also a prerequiste for configuring and
building Parrot.

If you have these dependencies installed, build the core
virtual machine and compiler toolkit and run the standard test
suite with the commands:
$ perl Configure.pl

1http://www.parrot.org/download
2http://parrotwin32.sourceforge.net/

4

Chapter 2. Getting Started

$ make

$ make test

By default, Parrot installs to directories bin/, lib/, and include/
under /usr/local. If you have privileges to write to these direc-
tories, install Parrot with:

$ make install

To install Parrot in a different location, use the �prefix option
to Configure.pl:

$ perl Configure.pl --prefix=/home/me/parrot

Setting the prefix to /home/me/parrot installs the Parrot exe-
cutable in /home/me/parrot/bin/parrot.

If you intend to develop a language on Parrot, install the
Parrot developer tools as well:

$ make install-dev

Once you’ve installed Parrot, create a test file called news.pir.3

.sub 'news'

say "Here is the news for Parrots."

.end

Now run this file with:

$ parrot news.pir

which will print:

Here is the news for Parrots.

3Files containing PIR code use the .pir extension.

5

CHAPTER3
Basic Syntax
PIR has a relatively simple syntax. Every line is a comment, a
label, a statement, or a directive. Each statement or directive
stands on its own line. There is no end-of-line symbol (such
as a semicolon in C).

Comments
A comment begins with the # symbol, and continues until the
end of the line. Comments can stand alone on a line or follow
a statement or directive.

This is a regular comment. The PIR

interpreter ignores this.

PIR also treats inline documentation in Pod format as a com-
ment. An equals sign as the first character of a line marks the
start of a Pod block. A =cut marker signals the end of a Pod
block.

=head2

This is Pod documentation, and is treated like a

comment. The PIR interpreter ignores this.

=cut

6

Chapter 3. Basic Syntax

Labels
A label attaches a name to a line of code so other statements
can refer to it. Labels can contain letters, numbers, and under-
scores. By convention, labels use all capital letters to stand out
from the rest of the source code. It’s fine to put a label on the
same line as a statement or directive:

GREET: say "'Allo, 'allo, 'allo."

Labels on separate lines improve readability, especially when
outdented:

GREET:

say "'Allo, 'allo, 'allo."

Statements
A statement is either an opcode or syntactic sugar for one or
more opcodes. An opcode is a native instruction for the virtual
machine; it consists of the name of the instruction followed by
zero or more arguments.

say "Norwegian Blue"

PIR also provides higher-level constructs, including symbolic
operators:

$I1 = 2 + 5

These special statement forms are just syntactic sugar for regu-
lar opcodes. The + symbol corresponds to the add opcode, the
- symbol to the sub opcode, and so on. The previous example
is equivalent to:

add $I1, 2, 5

7

Parrot Developer’s Guide: PIR

Directives
Directives resemble opcodes, but they begin with a period (.).
Some directives specify actions that occur at compile time.
Other directives represent complex operations that require the
generation of multiple instructions. The .local directive, for
example, declares a named variable.

.local string hello

Literals
Integers and floating point numbers are numeric literals. They
can be positive or negative.

$I0 = 42 # positive

$I1 = -1 # negative

Integer literals can also be binary, octal, or hexadecimal:

$I1 = 0b01010 # binary

$I2 = 0o72 # octal

$I3 = 0xA5 # hexadecimal

Floating point number literals have a decimal point and can
use scientific notation:

$N0 = 3.14

$N2 = -1.2e+4

String literals are enclosed in single or double-quotes.1

$S0 = "This is a valid literal string"

$S1 = 'This is also a valid literal string'

1See the section on Strings in Chapter 4 for an explanation of the
differences between the quoting types.

8

Chapter 3. Basic Syntax

Variables
PIR variables can store four different kinds of values—integers,
numbers (floating point), strings, and objects. Parrot’s objects
are called PMCs, for “PolyMorphic Container”.

The simplest kind of variable is a register variable. The
name of a register variable always starts with a dollar sign ($),
followed by a single character which specifies the type of the
variable—integer (I), number (N), string (S), or PMC (P)—and
ends with a unique number. You need not predeclare register
variables:

$S0 = "Who's a pretty boy, then?"

say $S0

PIR also has named variables; the .local directive declares
them. As with register variables, there are four valid types:
int, num, string, and pmc. You must declare named vari-
ables; otherwise they behave exactly the same as register vari-
ables.

.local string hello

hello = "'Allo, 'allo, 'allo."

say hello

Constants
The .const directive declares a named constant. Named con-
stants are similar to named variables, but the values set in the
declaration may never change. Like .local, .const takes a
type and a name. It also requires a literal argument to set the
value of the constant.

.const int frog = 4 # integer

.const string name = "Superintendent Parrot" # string

.const num pi = 3.14159 # floating point

9

Parrot Developer’s Guide: PIR

You may use a named constant anywhere you may use a literal,
but you must declare the named constant beforehand. This
example declares a named string constant hello and prints
the value:
.const string hello = "Hello, Polly."

say hello

Keys
A key is a special kind of constant used for accessing elements
in complex variables (such as an array). A key is either an
integer or a string; and it’s always enclosed in square brackets
([and]). You do not have to declare literal keys. This code
example stores the string “foo” in $P0 as element 5, and then
retreives it.
$P0[5] = "foo"

$S1 = $P0[5]

PIR supports multi-part keys. Use a semicolon to separate
each part.
$P0['my';'key'] = 472

$I1 = $P0['my';'key']

Control Structures
Rather than providing a pre-packaged set of control structures
like if and while, PIR gives you the building blocks to con-
struct your own.2 The most basic of these building blocks is
goto, which jumps to a named label.3 In this code example,
the say statement will run immediately after the goto state-
ment:

2PIR has many advanced features, but at heart it is an assembly language.
3This is not your father’s goto. It can only jump inside a subroutine,

and only to a named label.

10

Chapter 3. Basic Syntax

goto GREET

... some skipped code ...

GREET:

say "'Allo, 'allo, 'allo."

Variations on the basic goto check whether a particular con-
dition is true or false before jumping:

if $I0 > 5 goto GREET

You can construct any traditional control structure from PIR’s
built-in control structures.

Subroutines
A PIR subroutine starts with the .sub directive and ends with
the .end directive. Parameter declarations use the .param di-
rective; they resemble named variable declarations. This ex-
ample declares a subroutine named greeting, that takes a sin-
gle string parameter named hello:

.sub 'greeting'

.param string hello

say hello

.end

That’s All Folks
You now know everything you need to know about PIR. Ev-
erything else you read or learn about PIR will use one of these
fundamental language structures. The rest is vocabulary.

11

Parrot Developer’s Guide: PIR

Parrot Assembly Language

Parrot Assembly Language (PASM) is another low-level
language native to the virtual machine. PASM is a pure
assembly language, with none of the syntactic sugar that
makes PIR friendly for library development. PASM’s pri-
mary purpose is to act as a plain English reprepresention
of the bytecode format. Its typical use is for debugging,
rather than for writing libraries. Use PIR or a higher-level
language for development tasks.
PASM files use the .pasm file extension.

12

CHAPTER4
Variables
Parrot is a register-based virtual machine. It has four typed
register sets—integers, floating-point numbers, strings, and
objects. All variables in PIR are one of these four types. When
you work with register variables or named variables, you’re
actually working directly with register storage locations in the
virtual machine.

If you’ve ever worked with an assembly language before,
you may immediately jump to the conclusion that $I0 is the
zeroth integer register in the register set, but Parrot is a bit
smarter than that. The number of a register variable does not
necessarily correspond to the register used internally; Parrot’s
compiler maps registers as appropriate for speed and memory
considerations. The only guarantee Parrot gives you is that
you’ll always get the same storage location when you use $I0
in the same subroutine.

Assignment
The most basic operation on a variable is assignment using the
= operator:

$I0 = 42 # set integer variable to the value 42

$N3 = 3.14159 # set number variable to approximation of pi

$I1 = $I0 # set $I1 to the value of $I0

13

Parrot Developer’s Guide: PIR

The exchange opcode swaps the contents of two variables of
the same type. This example sets $I0 to the value of $I1 and
sets $I1 to the value of $I0.
exchange $I0, $I1

The null opcode sets an integer or number variable to a zero
value, and undefines a string or object.
null $I0 # 0

null $N0 # 0.0

null $S0 # NULL

null $P0 # PMCNULL

Working with Numbers
PIR has an extensive set of instructions that work with inte-
gers, floating-point numbers, and numeric PMCs. Many of
these instructions have a variant that modifies the result in
place:
$I0 = $I1 + $I2

$I0 += $I1

The first form of + stores the sum of the two arguments in the
result variable, $I0. The second variant, +=, adds the single
argument to $I0 and stores the sum back in $I0.

The arguments can be Parrot literals, variables, or con-
stants. If the result is an integer type, like $I0, the arguments
must also be integers. A number result, like $N0, usually re-
quires number arguments, but many numeric instructions also
allow the final argument to be an integer. Instructions with
a PMC result may accept an integer, floating-point, or PMC
final argument:
$P0 = $P1 * $P2

$P0 = $P1 * $I2

$P0 = $P1 * $N2

$P0 *= $P1

$P0 *= $I1

$P0 *= $N1

14

Chapter 4. Variables

Unary numeric opcodes
Unary opcodes have a single argument. They either return a
result or modify the argument in place. Some of the most com-
mon unary numeric opcodes are inc (increment), dec (decre-
ment), abs (absolute value), neg (negate), and fact (facto-
rial):

$N0 = abs -5.0 # the absolute value of -5.0 is 5.0

$I1 = fact 5 # the factorial of 5 is 120

inc $I1 # 120 incremented by 1 is 121

Binary numeric opcodes
Binary opcodes have two arguments and a result. Parrot pro-
vides addition (+ or add), subtraction (- or sub), multiplica-
tion (* or mul), division (/ or div), modulus (% or mod), and
exponent (pow) opcodes, as well as gcd (greatest common di-
visor) and lcm (least common multiple).

$I0 = 12 / 5

$I0 = 12 % 5

Floating-point operations
The most common floating-point operations are ln (natural
log), log2 (log base 2), log10 (log base 10), and exp (ex),
as well as a full set of trigonometric opcodes such as sin

(sine), cos (cosine), tan (tangent), sec (secant), cosh (hyper-
bolic cosine), tanh (hyperbolic tangent), sech (hyperbolic se-
cant), asin (arc sine), acos (arc cosine), atanatan opcode

(arc tangent), asec (arc secant), exsec (exsecant), hav (haver-
sine), and vers (versine). All angle arguments for the trigono-
metric opcodes are in radians:

$N0 = sin $N1

$N0 = exp 2

15

Parrot Developer’s Guide: PIR

The majority of the floating-point operations have a single ar-
gument and a single result. The arguments can generally be
either an integer or number, but many of these opcodes require
the result to be a number.

Logical and Bitwise Operations
The logical opcodes evaluate the truth of their arguments. They
are most useful to make decisions for control flow. Integers
and numeric PMCs support logical are false if they’re 0 and
true otherwise. Strings are false if they’re the empty string
or a single character “0”, and true otherwise. PMCs are true
when their get_bool vtable function returns a nonzero value.

The and opcode returns the first argument if it’s false and
the second argument otherwise:
$I0 = and 0, 1 # returns 0

$I0 = and 1, 2 # returns 2

The or opcode returns the first argument if it’s true and the
second argument otherwise:
$I0 = or 1, 0 # returns 1

$I0 = or 0, 2 # returns 2

$P0 = or $P1, $P2

Both and and or are short-circuiting ops. If they can deter-
mine what value to return from the first argument, they’ll never
evaluate the third. This is significant only for PMCs, as they
might have side effects on evaluation.

The xor opcode returns the first argument if it is the only
true value, returns the second argument if it is the only true
value, and returns false if both values are true or both are false:
$I0 = xor 1, 0 # returns 1

$I0 = xor 0, 1 # returns 1

$I0 = xor 1, 1 # returns 0

$I0 = xor 0, 0 # returns 0

16

Chapter 4. Variables

The not opcode returns a true value when the argument is false
and a false value if the argument is true:
$I0 = not $I1

$P0 = not $P1

The bitwise opcodes operate on their values a single bit at a
time. band, bor, and bxor return a value that is the logical
AND, OR, or XOR of each bit in the source arguments. They
each take two arguments.
$I0 = bor $I1, $I2

$P0 = bxor $P1, $I2

band, bor, and bxor also have variants that modify the result
in place.
$I0 = band $I1

$P0 = bor $P1

bnot is the logical NOT of each bit in the source argument.
$I0 = bnot $I1

The logical and arithmetic shift operations shift their values by
a specified number of bits:
$I0 = shl $I1, $I2 # shift $I1 left by count $I2

$I0 = shr $I1, $I2 # arithmetic shift right

$P0 = lsr $P1, $P2 # logical shift right

Working with Strings
Parrot strings are buffers of variable-sized data. The most
common use of strings is to store text data. Strings can also
hold binary or other non-textual data, though this is rare.1 Par-
rot strings are flexible and powerful, to handle the complex-
ity of human-readable (and computer-representable) text data.
String operations work with string literals, variables, and con-
stants, and with string-like PMCs.

1In general, a custom PMC is more useful.

17

Parrot Developer’s Guide: PIR

Escape Sequences
Strings in double-quotes allow escape sequences using back-
slashes. Strings in single-quotes only allow escapes for nested
quotes:
$S0 = "This string is \n on two lines"

$S0 = 'This is a \n one-line string with a slash in it'

Table 4.1 shows the escape sequences Parrot supports in double-
quoted strings.

Heredocs
If you need more flexibility in defining a string, use a heredoc
string literal. The � operator starts a heredoc. The string ter-
minator immediately follows. All text until the terminator is
part of the string. The terminator must appear on its own line,
must appear at the beginning of the line, and may not have any
trailing whitespace.
$S2 = << "End_Token"

This is a multi-line string literal. Notice that

it doesn't use quotation marks.

End_Token

Concatenating strings
Use the . operator to concatenate strings. The following ex-
ample concatenates the string “cd” onto the string “ab” and
stores the result in $S1.
$S0 = "ab"

$S1 = $S0 . "cd" # concatenates $S0 with "cd"

say $S1 # prints "abcd"

Concatenation has a .= variant to modify the result in place.
In the next example, the .= operation appends “xy” onto the
string “abcd” in $S1.
$S1 .= "xy" # appends "xy" to $S1

say $S1 # prints "abcdxy"

18

Chapter 4. Variables

Table 4.1: String Escapes

Escape Meaning
\a An ASCII alarm character
\b An ASCII backspace character
\t A tab
\n A newline
\v A vertical tab
\f A form feed
\r A carriage return
\e An escape
\\ A backslash
\� A quote
\xNN A character represented by 1-2 hex-

adecimal digits
\x{NNNNNNNN} A character represented by 1-8 hex-

adecimal digits
\oNNN A character represented by 1-3 octal

digits
\uNNNN A character represented by 4 hex-

adecimal digits
\UNNNNNNNN A character represented by 8 hex-

adecimal digits
\cX A control character X

Repeating strings
The repeat opcode repeats a string a specified number of
times:

$S0 = "a"

19

Parrot Developer’s Guide: PIR

$S1 = repeat $S0, 5

say $S1 # prints "aaaaa"

In this example, repeat generates a new string with “a” re-
peated five times and stores it in $S1.

Length of a string
The length opcode returns the length of a string in characters.
This won’t be the same as the length in bytes for multibyte
encoded strings:
$S0 = "abcd"

$I0 = length $S0 # the length is 4

say $I0

length has no equivalent for PMC strings.

Substrings
The simplest version of the substr opcode takes three argu-
ments: a source string, an offset position, and a length. It re-
turns a substring of the original string, starting from the offset
position (0 is the first character) and spanning the length:
$S0 = substr "abcde", 1, 2 # $S0 is "bc"

This example extracts a two-character string from “abcde” at a
one-character offset from the beginning of the string (starting
with the second character). It generates a new string, “bc”, in
the destination register $S0.

When the offset position is negative, it counts backward
from the end of the string. Thus an offset of -1 starts at the last
character of the string.

substr also has a four-argument form, where the fourth
argument is a string used to replace the substring. This variant
modifies the source string and returns the removed substring.

This example above replaces the substring “bc” in $S1

with the string “XYZ”, and returns “bc” in $S0:

20

Chapter 4. Variables

$S1 = "abcde"

$S0 = substr $S1, 1, 2, "XYZ"

say $S0 # prints "bc"

say $S1 # prints "aXYZde"

When the offset position in a replacing substr is one char-
acter beyond the original string length, substr appends the
replacement string just like the concatenation operator. If the
replacement string is an empty string, the opcode removes the
characters from the original string.

If you don’t need to capture the replaced string, an opti-
mized version of substr performs a replace without returning
the removed substring:
$S1 = "abcde"

$S1 = substr 1, 2, "XYZ"

say $S1 # prints "aXYZde"

Converting characters
The chr opcode takes an integer value and returns the corre-
sponding character in the ASCII character set as a one-character
string. The ord opcode takes a single character string and re-
turns the integer value of the character at the first position in
the string. The integer value of the character will differ de-
pending on the current encoding of the string:
$S0 = chr 65 # $S0 is "A"

$I0 = ord $S0 # $I0 is 65, if $S0 is ASCII/UTF-8

ord has a two-argument variant that takes a character offset
to select a single character from a multicharacter string. The
offset must be within the length of the string:
$I0 = ord "ABC", 2 # $I0 is 67

A negative offset counts backward from the end of the string,
so -1 is the last character.
$I0 = ord "ABC", -1 # $I0 is 67

21

Parrot Developer’s Guide: PIR

Formatting strings
The sprintf opcode generates a formatted string from a se-
ries of values. It takes two arguments: a string specifying the
format, and an array PMC containing the values to be format-
ted. The format string and the result can be either strings or
PMCs:

$S0 = sprintf $S1, $P2

$P0 = sprintf $P1, $P2

The format string is similar to C’s sprintf function with ex-
tensions for Parrot data types. Each format field in the string
starts with a % and ends with a character specifying the output
format. Table 4.2 lists the available output format characters.

Each format field supports several specifier options: flags,
width, precision, and size. Table 4.3 lists the format flags.

The width is a number defining the minimum width of
the output from a field. The precision is the maximum width
for strings or integers, and the number of decimal places for
floating-point fields. If either width or precision is an asterisk
(*), it takes its value from the next argument in the PMC.

The size modifier defines the type of the argument the field
takes. Table 4.4 lists the size flags. The values in the aggregate
PMC must have a type compatible with the specified size.

$S0 = sprintf "int %#Px num %+2.3Pf\n", $P2

say $S0 # prints "int 0x2a num +10.000"

The format string of this sprintf example has two format
fields. The first, %#Px, extracts a PMC argument (P) from the
aggregate $P2 and formats it as a hexadecimal integer (x) with
a leading 0x (#). The second format field, %+2.3Pf, takes a
PMC argument (P) and formats it as a floating-point number

22

Chapter 4. Variables

Table 4.2: Format characters

Format Meaning
%c A single character.
%d A decimal integer.
%i A decimal integer.
%u An unsigned integer.
%o An octal integer.
%x A hex integer, preceded by 0x (when # is

specified).
%X A hex integer with a capital X (when # is

specified).
%b A binary integer, preceded by 0b (when # is

specified).
%B A binary integer with a capital B (when # is

specified).
%p A pointer address in hex.
%f A floating-point number.
%e A floating-point number in scientific notation

(displayed with a lowercase “e”).
%E The same as %e, but displayed with an upper-

case E.
%g The same as %e or %f, whichever fits best.
%G The same as %g, but displayed with an upper-

case E.
%s A string.

(f) with a minimum of two whole digits and a maximum of
three decimal places (2.3) and a leading sign (+).

23

Parrot Developer’s Guide: PIR

Table 4.3: Format flags

Flag Meaning
0 Pad with zeros.
<space> Pad with spaces.
+ Prefix numbers with a sign.
- Align left.
Prefix a leading 0 for octal, 0x for hex, or

force a decimal point.

Table 4.4: Size flags

Character Meaning
h short integer or single-precision float
l long
H huge value (long long or long double)
v Parrot INTVAL or FLOATVAL
O opcode_t pointer
P PMC

S String

The test files t/op/string.t and t/op/sprintf.t have many more
examples of format strings.

Joining strings
The join opcode joins the elements of an array PMC into a
single string. The first argument separates the individual ele-
ments of the PMC in the final string result.

24

Chapter 4. Variables

$P0 = new "Array"

push $P0, "hi"

push $P0, 0

push $P0, 1

push $P0, 0

push $P0, "parrot"

$S0 = join "__", $P0

say $S0 # prints "hi__0__1__0__parrot"

This example builds a Array in $P0 with the values �hi�, 0,
1, 0, and �parrot�. It then joins those values (separated by
the string �__�) into a single string stored in $S0.

Splitting strings
Splitting a string yields a new array containing the resulting
substrings of the original string.

This example splits the string “abc” into individual char-
acters and stores them in an array in $P0. It then prints out the
first and third elements of the array.
$P0 = split "", "abc"

$P1 = $P0[0]

say $P1 # 'a'

$P1 = $P0[2]

say $P1 # 'c'

Testing for substrings
The index opcode searches for a substring within a string. If
it finds the substring, it returns the position where the sub-
string was found as a character offset from the beginning of
the string. If it fails to find the substring, it returns -1:
$I0 = index "Beeblebrox", "eb"

say $I0 # prints 2

$I0 = index "Beeblebrox", "Ford"

say $I0 # prints -1

index also has a three-argument version, where the final ar-
gument defines an offset position for starting the search.

25

Parrot Developer’s Guide: PIR

$I0 = index "Beeblebrox", "eb", 3

say $I0 # prints 5

This example finds the second “eb” in “Beeblebrox” instead
of the first, because the search skips the first three characters
in the string.

Bitwise Operations
The numeric bitwise opcodes also have string variants for AND,
OR, and XOR: bors, bands, and bxors. These take string or
string-like PMC arguments and perform the logical operation
on each byte of the strings to produce the result string.
$S0 = bors $S1

$P0 = bands $P1

$S0 = bors $S1, $S2

$P0 = bxors $P1, $S2

The bitwise string opcodes produce meaningful results only
when used with simple ASCII strings, because Parrot performs
bitwise operations per byte.

Copy-On-Write
Strings use copy-on-write (COW) optimizations. A call to $S1

= $S0 doesn’t immediately make a copy of $S0, it only makes
both variables point to the same string. Parrot doesn’t make a
copy of the string until one of two strings is modified.
$S0 = "Ford"

$S1 = $S0

$S1 = "Zaphod"

say $S0 # prints "Ford"

say $S1 # prints "Zaphod"

Modifying one of the two variables causes Parrot to create a
new string. This example preserves the existing value in $S0

and assigns the new value to the new string in $S1. The benefit
of copy-on-write is avoiding the cost of copying strings until
the copies are necessary.

26

Chapter 4. Variables

Encodings and Charsets
Years ago, strings only needed to support the ASCII character
set (or charset), a mapping of 128 bit patterns to symbols and
English-language characters. This worked as long as every-
one using a computer read and wrote English and only used a
small handful of punctuation symbols. In other words, it was
woefully insufficient. A modern string system must manage
charsets in order to make sense out of all the string data in
the world. A modern string system must also handle different
encodings—ways to represent various charsets in memory and
on disk.

Every string in Parrot has an associated encoding and char-
acter set. The default charset is 8-bit ASCII, which is al-
most universally supported. Double-quoted string constants
can have an optional prefix specifying the string’s encoding
and charset.2 Parrot tracks information about encoding and
charset internally, and automatically converts strings when nec-
essary to preserve these characteristics. Strings constants may
have prefixes of the form encoding:charset:.

$S0 = utf8:unicode:"Hello UTF-8 Unicode World!"

$S1 = utf16:unicode:"Hello UTF-16 Unicode World!"

$S2 = ascii:"This is 8-bit ASCII"

$S3 = binary:"This is raw, unformatted binary data"

Parrot supports the character sets ascii, binary, iso-8859-1
(Latin 1), and unicode and the encodings fixed_8, ucs2,
utf8, and utf18.

The binary: charset treats the string as a buffer of raw
unformatted binary data. It isn’t really a string per se, because

2As you might suspect, single-quoted strings do not support this.

27

Parrot Developer’s Guide: PIR

binary data contains no readable characters. This exists to sup-
port libraries which manipulate binary data that doesn’t easily
fit into any other primitive data type.

When Parrot operates on two strings (as in concatenation
or comparison), they must both use the same character set and
encoding. Parrot will automatically upgrade one or both of
the strings to the next highest compatible format as necessary.
ASCII strings will automatically upgrade to UTF-8 strings if
needed, and UTF-8 will upgrade to UTF-16. All of these con-
versions happen inside Parrot, so the programmer doesn’t need
to worry about the details.

Working with PMCs
Polymorphic Containers (PMCs) are the basis for complex
data types and object-oriented behavior in Parrot. In PIR, any
variable that isn’t a low-level integer, number, or string is a
PMC. PMC variables act much like the low-level variables,
but you have to instantiate a new PMC object before you use
it. The new opcode creates a new PMC object of the specified
type.
$P0 = new 'String'

$P0 = "That's a bollard and not a parrot"

say $P0

This example creates a String object, stores it in the PMC
register variable $P0, assigns it the value “That’s a bollard and
not a parrot”, and prints it.

Every PMC has a type that indicates what data it can store
and what behavior it supports. The typeof opcode reports the
type of a PMC. When the result is a string variable, typeof
returns the name of the type:
$P0 = new "String"

28

Chapter 4. Variables

$S0 = typeof $P0 # $S0 is "String"

say $S0 # prints "String"

When the result is a PMC variable, typeof returns the Class
PMC for that object type.

Scalars
In most of the examples shown so far, PMCs duplicate the
behavior of integers, numbers, and strings. Parrot provides a
set of PMCs for this exact purpose. Integer, Number, and
String are thin overlays on Parrot’s low-level integers, num-
bers, and strings.

A previous example showed a string literal assigned to a
PMC variable of type String. Direct assignment of a literal
to a PMC works for all the low-level types and their PMC
equivalents:

$P0 = new 'Integer'

$P0 = 5

$P1 = new 'String'

$P1 = "5 birds"

$P2 = new 'Number'

$P2 = 3.14

You may also assign non-constant low-level integer, num-
ber, or string registers directly to a PMC. The PMC handles
the conversion from the low-level type to its own internal stor-
age.3

$I0 = 5

$P0 = new 'Integer'

$P0 = $I0

3This conversion of a simpler type to a more complex type is “boxing”.

29

Parrot Developer’s Guide: PIR

$S1 = "5 birds"

$P1 = new 'String'

$P1 = $S1

$N2 = 3.14

$P2 = new 'Number'

$P2 = $N2

The box opcode is a handy shortcut to create the appropriate
PMC object from an integer, number, or string literal or vari-
able.

$P0 = box 3 # $P0 is an "Integer"

$P1 = box $S1 # $P1 is a "String"

$P2 = box 3.14 # $P2 is a "Number"

In the reverse situation, when assigning a PMC to an integer,
number, or string variable, the PMC also has the ability to con-
vert its value to the low-level type.4

$P0 = box 5

$S0 = $P0 # the string "5"

$N0 = $P0 # the number 5.0

$I0 = $P0 # the integer 5

$P1 = box "5 birds"

$S1 = $P1 # the string "5 birds"

$I1 = $P1 # the integer 5

$N1 = $P1 # the number 5.0

$P2 = box 3.14

$S2 = $P2 # the string "3.14"

$I2 = $P2 # the integer 3

$N2 = $P2 # the number 3.14

4The reverse of “boxing” is “unboxing”.

30

Chapter 4. Variables

This example creates Integer, Number, and String PMCs,
and shows the effect of assigning each one back to a low-level
type.

Converting a string to an integer or number only makes
sense when the contents of the string are a number. The String
PMC will attempt to extract a number from the beginning of
the string, but otherwise will return a false value.

Type Conversions

Parrot also handles conversions between the low-level
types where possible, converting integers to strings ($S0
= $I1), numbers to strings ($S0 = $N1), numbers to inte-
gers ($I0 = $N1), integers to numbers ($N0 = $I1), and
even strings to integers or numbers ($I0 = $S1 and $N0

= $S1).

Aggregates
PMCs can define complex types that hold multiple values,
commonly called aggregates. Two basic aggregate types are
ordered arrays and associative arrays. The primary difference
between these is that ordered arrays use integer keys for in-
dexes and associative arrays use string keys.

Aggregate PMCs support the use of numeric or string keys.
PIR also offers a extensive set of operations for manipulating
aggregate data types.

Ordered Arrays
Parrot provides several ordered array PMCs, differentiated by
whether the array should store booleans, integers, numbers,

31

Parrot Developer’s Guide: PIR

strings, or other PMCs, and whether the array should maintain
a fixed size or dynamically resize for the number of elements
it stores.

The core array types are FixedPMCArray, Resizable-
PMCArray, FixedIntegerArray, ResizableIntegerArray,
FixedFloatArray, ResizableFloatArray, FixedString-
Array, ResizableStringArray, FixedBooleanArray, and
ResizableBooleanArray. The array types that start with
“Fixed” have a fixed size and do not allow elements to be
added outside their allocated size. The “Resizable” variants
automatically extend themselves as more elements are added.5

The array types that include “String”, “Integer”, or “Boolean”
in the name use alternate packing methods for greater memory
efficiency.

Parrot’s core ordered array PMCs all have zero-based in-
teger keys. Extracting or inserting an element into the array
uses PIR’s standard key syntax, with the key in square brack-
ets after the variable name. An lvalue key sets the value for
that key. An rvalue key extracts the value for that key in the
aggregate to use as the argument value:

$P0 = new "ResizablePMCArray" # create a new array object

$P0[0] = 10 # set first element to 10

$P0[1] = $I31 # set second element to $I31

$I0 = $P0[0] # get the first element

Setting the array to an integer value directly (without a key)
sets the number of elements of the array. Assigning an array
directly to an integer retrieves the number of elements of the
array.

5With some additional overhead for checking array bounds and reallo-
cating array memory.

32

Chapter 4. Variables

$P0 = 2 # set array size

$I1 = $P0 # get array size

This is equivalent to using the elements opcode to retrieve
the number of items currently in an array:
elements $I0, $P0 # get element count

Some other useful instructions for working with ordered ar-
rays are push, pop, shift, and unshift, to add or remove
elements. push and pop work on the end of the array, the
highest numbered index. shift and unshift work on the
start of the array, adding or removing the zeroth element, and
renumbering all the following elements.
push $P0, 'banana' # add to end

$S0 = pop $P0 # fetch from end

unshift $P0, 74 # add to start

$I0 = shift $P0 # fetch from start

Associative Arrays
An associative array is an unordered aggregate that uses string
keys to identify elements. You may know them as “hash ta-
bles”, “hashes”, “maps”, or “dictionaries”. Parrot provides
one core associative array PMC, called Hash. String keys work
very much like integer keys. An lvalue key sets the value of
an element, and an rvalue key extracts the value of an ele-
ment. The string in the key must always be in single or double
quotes.
new $P1, "Hash" # create a new associative array

$P1["key"] = 10 # set key and value

$I0 = $P1["key"] # get value for key

Assigning a Hash PMC (without a key) to an integer result
fetches the number of elements in the hash.6

6You may not set a Hash PMC directly to an integer value.

33

Parrot Developer’s Guide: PIR

$I1 = $P1 # number of entries

The exists opcode tests whether a keyed value exists in an
aggregate. It returns 1 if it finds the key in the aggregate and
0 otherwise. It doesn’t care if the value itself is true or false,
only that an entry exists for that key:

new $P0, "Hash"

$P0["key"] = 0

exists $I0, $P0["key"] # does a value exist at "key"?

say $I0 # prints 1

The delete opcode removes an element from an associative
array:

delete $P0["key"]

Iterators
An iterator extracts values from an aggregate PMC one at a
time. Iterators are most useful in loops which perform an ac-
tion on every element in an aggregate. The iter opcode cre-
ates a new iterator from an aggregate PMC. It takes one argu-
ment, the PMC over which to iterate:

$P1 = iter $P2

Alternatively, you can also create an iterator by creating a new
Iterator PMC, passing the aggregate PMC as an initializa-
tion parameter to new:

$P1 = new "Iterator", $P2

The shift opcode extracts the next value from the iterator.

$P5 = shift $P1

Evaluating the iterator PMC as a boolean returns whether the
iterator has reached the end of the aggregate:

34

Chapter 4. Variables

if $P1 goto iter_repeat

Parrot provides predefined constants for working with itera-
tors. .ITERATE_FROM_START and .ITERATE_FROM_END con-
stants select whether an ordered array iterator starts from the
beginning or end of the array. These two constants have no
effect on associative array iterators, as their elements are un-
ordered.

Load the iterator constants with the .include directive
to include the file iterator.pasm. To use them, set the iterator
PMC to the value of the constant:

.include "iterator.pasm"

...

$P1 = .ITERATE_FROM_START

With all of those separate pieces in one place, this example
loads the iterator constants, creates an ordered array of “a”,
“b”, “c”, creates an iterator from that array, and then loops over
the iterator using a conditional goto to checks the boolean
value of the iterator and another unconditional goto:

.include "iterator.pasm"

$P2 = new "ResizablePMCArray"

push $P2, "a"

push $P2, "b"

push $P2, "c"

$P1 = iter $P2

$P1 = .ITERATE_FROM_START

iter_loop:

unless $P1 goto iter_end

$P5 = shift $P1

say $P5 # prints "a", "b", "c"

goto iter_loop

iter_end:

35

Parrot Developer’s Guide: PIR

Associative array iterators work similarly to ordered array it-
erators. When iterating over associative arrays, the shift op-
code extracts keys instead of values. The key looks up the
value in the original hash PMC.

$P2 = new "Hash"

$P2["a"] = 10

$P2["b"] = 20

$P2["c"] = 30

$P1 = iter $P2

iter_loop:

unless $P1 goto iter_end

$S5 = shift $P1 # the key "a", "b", or "c"

$I9 = $P2[$S5] # the value 10, 20, or 30

say $I9

goto iter_loop

iter_end:

This example creates an associative array $P2 that contains
three keys “a”, “b”, and “c”, assigning them the values 10, 20,
and 30. It creates an iterator ($P1) from the associative array
using the iter opcode, and then starts a loop over the itera-
tor. At the start of each loop, the unless instruction checks
whether the iterator has any more elements. If there are no
more elements, goto jumps to the end of the loop, marked by
the label iter_end. If there are more elements, the shift

opcode extracts the next key. Keyed assignment stores the in-
teger value of the element indexed by the key in $I9. After
printing the integer value, goto jumps back to the start of the
loop, marked by iter_loop.

Multi-level Keys
Aggregates can hold any data type, including other aggregates.
Accessing elements deep within nested data structures is a

36

Chapter 4. Variables

common operation, so PIR provides a way to do it in a sin-
gle instruction. Complex keys specify a series of nested data
structures, with each individual key separated by a semicolon.
$P0 = new "Hash"

$P1 = new "ResizablePMCArray"

$P1[2] = 42

$P0["answer"] = $P1

$I1 = 2

$I0 = $P0["answer";$I1]

say $I0

This example builds up a data structure of an associative array
containing an ordered array. The complex key ["answer�;

$I1] retrieves an element of the array within the hash. You
can also set a value using a complex key:
$P0["answer";0] = 5

The individual keys are integer or string literals, or variables
with integer or string values.

Copying and Cloning
PMC registers don’t directly store the data for a PMC, they
only store a pointer to the structure that stores the data. As
a result, the = operator doesn’t copy the entire PMC, it only
copies the pointer to the PMC data. If you later modify the
copy of the variable, it will also modify the original.
$P0 = new "String"

$P0 = "Ford"

$P1 = $P0

$P1 = "Zaphod"

say $P0 # prints "Zaphod"

say $P1 # prints "Zaphod"

In this example, $P0 and $P1 are both pointers to the same
internal data structure. Setting $P1 to the string literal “Za-
phod”, it overwrites the previous value “Ford”. Both $P0 and
$P1 refer to the String PMC “Zaphod”.

37

Parrot Developer’s Guide: PIR

The clone opcode makes a deep copy of a PMC, instead
of copying the pointer like = does.

$P0 = new "String"

$P0 = "Ford"

$P1 = clone $P0

$P0 = "Zaphod"

say $P0 # prints "Zaphod"

say $P1 # prints "Ford"

This example creates an identical, independent clone of the
PMC in $P0 and puts it in $P1. Later changes to $P0 have no
effect on the PMC in $P1.7

To assign the value of one PMC to another PMC that al-
ready exists, use the assign opcode:

$P0 = new "Integer"

$P1 = new "Integer"

$P0 = 42

assign $P1, $P0 # note: $P1 must exist already

inc $P0

say $P0 # prints 43

say $P1 # prints 42

This example creates two Integer PMCs, $P1 and $P2, and
gives the first one the value 42. It then uses assign to pass the
same integer value on to $P1. Though $P0 increments, $P1
doesn’t change. The result for assign must have an existing
object of the right type in it, because assign neither creates
a new duplicate object (as does clone) or reuses the source
object (as does =).

7With low-level strings, the copies created by clone are copy-on-write
exactly the same as the copy created by =.

38

Chapter 4. Variables

Properties
PMCs can have additional values attached to them as “proper-
ties” of the PMC. Most properties hold extra metadata about
the PMC.

The setprop opcode sets the value of a named property
on a PMC. It takes three arguments: the PMC on which to set
a property, the name of the property, and a PMC containing
the value of the property.

setprop $P0, "name", $P1

The getprop opcode returns the value of a property. It takes
two arguments: the name of the property and the PMC from
which to retrieve the property value.

$P2 = getprop "name", $P0

This example creates a String object in $P0 and an Integer

object with the value 1 in $P1. setprop sets a property named
“eric” on the object in $P0 and gives the property the value of
$P1. getprop retrieves the value of the property “eric” on $P0

and stores it in $P2.

$P0 = new "String"

$P0 = "Half-a-Bee"

$P1 = new "Integer"

$P1 = 1

setprop $P0, "eric", $P1 # set a property on $P0

$P2 = getprop "eric", $P0 # retrieve a property from $P0

say $P2 # prints 1

Parrot stores PMC properties in an associative array where the
name of the property is the key.

delprop deletes a property from a PMC.

delprop $P1, "constant" # delete property

39

Parrot Developer’s Guide: PIR

You can fetch a complete hash of all properties on a PMC with
prophash:

$P0 = prophash $P1 # set $P0 to the property hash of $P1

Fetching the value of a non-existent property returns an Undef

PMC.

Vtable Functions
You may have noticed that a simple operation sometimes has
a different effect on different PMCs. Assigning a low-level
integer value to a Integer PMC sets its integer value of the
PMC, but assigning that same integer to an ordered array sets
the size of the array.

Every PMC defines a standard set of low-level operations
called vtable functions. When you perform an assignment like:

$P0 = 5

. . . Parrot calls the set_integer_native vtable function on
the PMC referred to by register $P0.

Parrot has a fixed set of vtable functions, so that any PMC
can stand in for any other PMC; they’re polymorphic.8 Every
PMC defines some behavior for every vtable function. The
default behavior is to throw an exception reporting that the
PMC doesn’t implement that vtable function. The full set of
vtable functions for a PMC defines the PMC’s basic interface,
but PMCs may also define methods to extend their behavior
beyond the vtable set.

8Hence the name “Polymorphic Container”.

40

Chapter 4. Variables

Namespaces
Parrot performs operations on variables stored in small register
sets local to each subroutine. For more complex tasks,9 it’s
also useful to have variables that live beyond the scope of a
single subroutine. These variables may be global to the entire
program or restricted to a particular library. Parrot stores long-
lived variables in a hierarchy of namespaces.

The opcodes set_global and get_global store and fetch
a variable in a namespace:

$P0 = new "String"

$P0 = "buzz, buzz"

set_global "bee", $P0

...

$P1 = get_global "bee"

say $P1 # prints "buzz, buzz"

The first two statements in this example create a String PMC
in $P0 and assign it a value. In the third statement, set_global
stores that PMC as the named global variable bee. At some
later point in the program, get_global retrieves the global
variable by name, and stores it in $P1 to print.

Namespaces can only store PMC variables. Parrot boxes
all primitive integer, number, or string values into the corre-
sponding PMCs before storing them in a namespace.

The name of every variable stored in a particular names-
pace must be unique. You can’t have store both an Integer

PMC and an array PMC both named “bee”, stored in the same
namespace.10

9. . . and for most high-level languages that Parrot supports.
10You may wonder why anyone would want to do this. We wonder the

same thing, but Perl 5 does it all the time. The Perl 6 implementation on Par-

41

Parrot Developer’s Guide: PIR

Namespace Hierarchy
A single global namespace would be far too limiting for most
languages or applications. The risk of accidental collisions—
where two libraries try to use the same name for some variable—
would be quite high for larger code bases. Parrot maintains a
collection of namespaces arranged as a tree, with the parrot

namespace as the root. Every namespace you declare is a child
of the parrot namespace (or a child of a child. . . .).

The set_global and get_global opcodes both have al-
ternate forms that take a key name to access a variable in a par-
ticular namespace within the tree. This code example stores a
variable as bill in the Duck namespace and retrieves it again:

set_global ["Duck"], "bill", $P0

$P1 = get_global ["Duck"], "bill"

The key name for the namespace can have multiple levels,
which correspond to levels in the namespace hierarchy. This
example stores a variable as bill in the Electric namespace
under the General namespace in the hierarchy.

set_global ["General";"Electric"], "bill", $P0

$P1 = get_global ["General";"Electric"], "bill"

The set_global and get_global opcode operate on the
currently selected namespace. The default top-level names-
pace is the “root” namespace. The .namespace directive al-
lows you to declare any namespace for subsequent code. If
you select the General Electric namespace, then store or re-
trieve the bill variable without specifying a namespace, you
will work with the General Electric bill, not the Duck bill.

rot includes type sigils in the names of the variables it stores in namespaces
so each name is unique, e.g. $bee, @bee. . . .

42

Chapter 4. Variables

.namespace ["General";"Electric"]

#...

set_global "bill", $P0

$P1 = get_global "bill"

Passing an empty key to the .namespace directive resets the
selected namespace to the root namespace. The brackets are
required even when the key is empty.
.namespace []

When you need to be absolutely sure you’re working with the
root namespace regardless of what namespace is currently ac-
tive, use the set_root_global and get_root_global op-
codes instead of set_global and get_global. This example
sets and retrieves the variable bill in the Dollar namespace,
which is directly under the root namespace:
set_root_global ["Dollar"], "bill", $P0

$P1 = get_root_global ["Dollar"], "bill"

To prevent further collisions, each high-level language run-
ning on Parrot operates within its own virtual namespace root.
The default virtual root is parrot, and the .HLL directive (for
High-Level Language) selects an alternate virtual root for a
particular high-level language:
.HLL 'ruby'

The set_hll_global and get_hll_global opcodes are like
set_root_global and get_root_global, except they al-
ways operate on the virtual root for the currently selected HLL.
This example stores and retrieves a bill variable in the Euro
namespace, under the Dutch HLL namespace root:
.HLL 'Dutch'

#...

set_hll_global ["Euro"], "bill", $P0

$P1 = get_hll_global ["Euro"], "bill"

43

Parrot Developer’s Guide: PIR

NameSpace PMC
Namespaces are just PMCs. They implement the standard
vtable functions and a few extra methods. The get_namespace
opcode retrieves the currently selected namespace as a PMC
object:

$P0 = get_namespace

The get_root_namespace opcode retrieves the namespace
object for the root namespace. The get_hll_namespace op-
code retrieves the virtual root for the currently selected HLL.

$P0 = get_root_namespace

$P0 = get_hll_namespace

Each of these three opcodes can take a key argument to re-
trieve a namespace under the currenly selected namespace,
root namespace, or HLL root namespace:

$P0 = get_namespace ["Duck"]

$P0 = get_root_namespace ["General";"Electric"]

$P0 = get_hll_namespace ["Euro"]

Once you have a namespace object you can use it to retrieve
variables from the namespace instead of using a keyed lookup.
This example first looks up the Euro namespace in the cur-
rently selected HLL, then retrieves the bill variable from that
namespace:

$P0 = get_hll_namespace ["Euro"]

$P1 = get_global $P0, "bill"

Namespaces also provide a set of methods to provide more
complex behavior than the standard vtable functions allow.
The get_name method returns the name of the namespace as
a ResizableStringArray:

$P3 = $P0.'get_name'()

44

Chapter 4. Variables

The get_parent method retrieves a namespace object for the
parent namespace that contains this one:

$P5 = $P0.'get_parent'()

The get_class method retrieves any Class PMC associated
with the namespace:

$P6 = $P0.'get_class'()

The add_var and find_var methods store and retrieve vari-
ables in a namespace in a language-neutral way:

$P0.'add_var'("bee", $P3)

$P1 = $P0.'find_var'("bee")

The find_namespace method looks up a namespace, just like
the get_namespace opcode:

$P1 = $P0.'find_namespace'("Duck")

The add_namespaceadd_namespace method method adds a
new namespace as a child of the namespace object:

$P0.'add_namespace'($P1)

The make_namespacemethod looks up a namespace as a child
of the namespace object and returns it. If the requested names-
pace doesn’t exist, make_namespace creates a new one and
adds it under that name:

$P1 = $P0.'make_namespace'("Duck")

45

Parrot Developer’s Guide: PIR

Aliasing
Just like regular assignment, the various operations to store a
variable in a namespace only store a pointer to the PMC. If
you modify the local PMC after storing in a namespace, those
changes will also appear in the stored global. To store a true
copy of the PMC, clone it before you store it.

Leaving the global variable as an alias for a local variable
has its advantages. If you retrieve a stored global into a register
and modify it:

$P1 = get_global "feather"

inc $P1

. . . you modify the value of the stored global, so you don’t need
to call set_global again.

46

CHAPTER5
Control Structures
The semantics of control structures in high-level languages
vary broadly. Rather than dictating one particular set of se-
mantics for control structures, or attempting to provide mul-
tiple implementations of common control structures to fit the
semantics of all major target languages, PIR provides a simple
set of conditional and unconditional branch instructions.1

Conditionals and Unconditionals
An unconditional branch always jumps to a specified label.
PIR has only one unconditional branch instruction, goto. In
this example, the first print statement never runs because the
goto always skips over it to the label skip_all_that:

goto skip_all_that

say "never printed"

skip_all_that:

say "after branch"

1In fact, all control structures in all languages ultimately compile down
to conditional and unconditional branches, so you’re just getting a peek into
the inner workings of your software.

47

Parrot Developer’s Guide: PIR

A conditional branch jumps to a specified label only when a
particular condition is true. The condition may be as simple as
checking the truth of a particular variable or as complex as a
comparison operation.

In this example, the if/goto skips to the label maybe_skip
only if the value stored in $I0 is true. If $I0 is false, it will
print “might be printed” and then print “after branch”:

if $I0 goto maybe_skip

say "might be printed"

maybe_skip:

say "after branch"

Boolean Truth
Parrot’s if and unless instructions evaluate a variable as a
boolean to decide whether to jump. In PIR, an integer is false
if it’s 0 and true if it’s any non-zero value. A number is false
if it’s 0.0 and true otherwise. A string is false if it’s the empty
string (��) or a string containing only a zero (�0�), and true
otherwise. Evaluating a PMC as a boolean calls the vtable
function get_bool to check if it’s true or false, so each PMC
is free to determine what its boolean value should be.

Comparisons
In addition to a simple check for the truth of a variable, PIR
provides a collection of comparison operations for conditional
branches. These jump when the comparison is true.

This example compares $I0 to $I1 and jumps to the label
success if $I0 is less than $I1:

if $I0 < $I1 goto success

say "comparison false"

success:

say "comparison true"

48

Chapter 5. Control Structures

The full set of comparison operators in PIR are == (equal), !=
(not equal), < (less than), <= (less than or equal), > (greater
than), and >= (greater than or equal).

Complex Conditions
PIR disallows nested expressions. You cannot embed a state-
ment within another statement. If you have a more complex
condition than a simple truth test or comparison, you must
build up your condition with a series of instructions that pro-
duce a final, single truth value.

This example performs two operations, addition and mul-
tiplication, then uses and to check if the results of both opera-
tions were true. The and opcode stores a boolean value (0 or
1) in the integer variable $I2; the code uses this value in an
ordinary truth test:

$I0 = 4 + 5

$I1 = 63 * 0

$I2 = and $I0, $I1

if $I2 goto true

say "maybe printed"

true:

If/Else Construct
if control structure High-level languages often use the
keywords if and else for simple conditional control structures.
These control structures perform an action when a condition is
true and skip the action when the condition is false. PIR’s if
instruction can build up simple conditionals.

This example checks the truth of the condition $I0. If $I0
is true, it jumps to the do_it label, and runs the body of the
conditional construct. If $I0 is false, it continues on to the

49

Parrot Developer’s Guide: PIR

next statement, a goto instruction that skips over the body of
the conditional to the label dont_do_it:

if $I0 goto do_it

goto dont_do_it

do_it:

say "in the body of the if"

dont_do_it:

The control flow of this example may seem backwards. In a
high-level language, if often means “if the condition is true,
run the next few lines of code”. In an assembly language, it’s
often more straightforward to write “if the condition is true,
skip the next few lines of code”. Because of the reversed logic,
you may find it easier to build a simple conditional construct
using the unless instruction instead of if.

unless $I0 goto dont_do_it

say "in the body of the if"

dont_do_it:

This example produces the same output as the previous exam-
ple, but the logic is simpler. When $I0 is true, unless does
nothing and the body of the conditional runs. When $I0 is
false, unless skips over the body of the conditional by jump-
ing to dont_do_it.

else control structure An if/else control structure is
easier to build using the if instruction than unless. To build
an if/else, insert the body of the else right after the first if
instruction.

This example checks if $I0 is true. If so, it jumps to the
label true and runs the body of the if construct. If $I0 is
false, the if instruction does nothing, and the code continues
to the body of the else construct. When the body of the else
has finished, the goto jumps to the end of the if/else control
structure by skipping over the body of the if construct:

50

Chapter 5. Control Structures

if $I0 goto true

say "in the body of the else"

goto done

true:

say "in the body of the if"

done:

Switch Construct
A switch control structure selects one action from a list of pos-
sible actions by comparing a single variable to a series of val-
ues until it finds one that matches. The simplest way to achieve
this in PIR is with a series of unless instructions:

$S0 = 'a'

option1:

unless $S0 == 'a' goto option2

say "matched: a"

goto end_of_switch

option2:

unless $S0 == 'b' goto default

say "matched: b"

goto end_of_switch

default:

say "I don't understand"

end_of_switch:

This example uses $S0 as the case of the switch construct. It
compares that case against the first value a. If they match, it
prints the string “matched: a”, then jumps to the end of the
switch at the label end_of_switch. If the first case doesn’t
match a, the goto jumps to the label option2 to check the
second option. The second option compares the case against
the value b. If they match, it prints the string “matched: b”,
then jumps to the end of the switch. If the case doesn’t match

51

Parrot Developer’s Guide: PIR

the second option, the goto goes on to the default case, prints
“I don’t understand”, and continues to the end of the switch.

Do-While Loop
A do-while loop runs the body of the loop once, then checks
a condition at the end to decide whether to repeat it. A single
conditional branch can build this style of loop:

$I0 = 0 # counter

redo: # start of loop

inc $I0

say $I0

if $I0 < 10 goto redo # end of loop

This example prints the numbers 1 to 10. The first time through,
it executes all statements up to the if instruction. If the con-
dition evaluates as true ($I0 is less than 10), it jumps to the
redo label and runs the loop body again. The loop ends when
the condition evaluates as false.

Here’s a slightly more complex example that calculates the
factorial 5!:

.local int product, counter

product = 1

counter = 5

redo: # start of loop

product *= counter

dec counter

if counter > 0 goto redo # end of loop

say product

Each time through the loop it multiplies product by the cur-
rent value of the counter, decrements the counter, and jumps
to the start of the loop. The loop ends when counter has
counted down to 0.

52

Chapter 5. Control Structures

While Loop
A while loop tests the condition at the start of the loop instead
of at the end. This style of loop needs a conditional branch
combined with an unconditional branch. This example also
calculates a factorial, but with a while loop:

.local int product, counter

product = 1

counter = 5

redo: # start of loop

if counter <= 0 goto end_loop

product *= counter

dec counter

goto redo

end_loop: # end of loop

say product

This code tests the counter counter at the start of the loop to
see if it’s less than or equal to 0, then multiplies the current
product by the counter and decrements the counter. At the end
of the loop, it unconditionally jumps back to the start of the
loop and tests the condition again. The loop ends when the
counter counter reaches 0 and the if jumps to the end_loop
label. If the counter is a negative number or zero before the
loop starts the first time, the body of the loop will never exe-
cute.

For Loop
A for loop is a counter-controlled loop with three declared
components: a starting value, a condition to determine when to
stop, and an operation to step the counter to the next iteration.
A for loop in C looks something like:
for (i = 1; i <= 10; i++) {

...

}

53

Parrot Developer’s Guide: PIR

where i is the counter, i = 1 sets the start value, <i <= 10>
checks the stop condition, and i++ steps to the next iteration.
A for loop in PIR requires one conditional branch and two
unconditional branches.

loop_init:

.local int counter

counter = 1

loop_test:

if counter <= 10 goto loop_body

goto loop_end

loop_body:

say counter

loop_continue:

inc counter

goto loop_test

loop_end:

The first time through the loop, this example sets the initial
value of the counter in loop_init. It then goes on to test
that the loop condition is met in loop_test. If the condi-
tion is true (counter is less than or equal to 10) it jumps to
loop_body and executes the body of the loop. If the the con-
dition is false, it will jump straight to loop_end and the loop
will end. The body of the loop prints the current counter then
goes on to loop_continue, which increments the counter and
jumps back up to loop_test to continue on to the next iter-
ation. Each iteration through the loop tests the condition and
increments the counter, ending the loop when the condition is
false. If the condition is false on the very first iteration, the
body of the loop will never run.

54

CHAPTER6
Subroutines
Subroutines in PIR are roughly equivalent to the subroutines
or methods of a high-level language. They’re the most basic
building block of code reuse in PIR. Each high-level language
has different syntax and semantics for defining and calling
subroutines, so Parrot’s subroutines need to be flexible enough
to handle a broad array of behaviors.

A subroutine declaration starts with the .sub directive and
ends with the .end directive. This example defines a subrou-
tine named hello that prints a string “Hello, Polly.”:

.sub 'hello'

say "Hello, Polly."

.end

The quotes around the subroutine name are optional as long
as the name of the subroutine uses only plain alphanumeric
ASCII characters. You must use quotes if the subroutine name
uses Unicode characters, characters from some other character
set or encoding, or is otherwise an invalid PIR identifier.

A subroutine call consists of the name of the subroutine to
call followed by a list of (zero or more) arguments in paren-
theses. You may precede the call with a list of (zero or more)
return values. This example calls the subroutine fact with
two arguments and assigns the result to $I0:

55

Parrot Developer’s Guide: PIR

$I0 = 'fact'(count, product)

Modifiers
A modifier is an annotation to a basic subroutine declaration1

that selects an optional feature. Modifiers all start with a colon
(:). A subroutine can have multiple modifiers.

When you execute a PIR file as a program, Parrot normally
runs the first subroutine it encounters, but you can mark any
subroutine as the first one to run with the :main modifier:

.sub 'first'

say "Polly want a cracker?"

.end

.sub 'second' :main

say "Hello, Polly."

.end

This code prints “Hello, Polly.” but not “Polly want a cracker?”.
The first subroutine is first in the source code, but second
has the :main modifier. Parrot will never call first in this
program. If you remove the :main modifier, the code will
print “Polly want a cracker?” instead.

The :load modifier tells Parrot to run the subroutine when
it loads the current file as a library. The :init modifier tells
Parrot to run the subroutine only when it executes the file as a
program (and not as a library). The :immediate modifier tells
Parrot to run the subroutine as soon as it gets compiled. The
:postcomp modifier also runs the subroutine right after com-
pilation, but only if the subroutine was declared in the main
program file (when not loaded as a library).

1or parameter declaration

56

Chapter 6. Subroutines

By default, Parrot stores all subroutines in the namespace
currently active at the point of their declaration. The :anon

modifier tells Parrot not to store the subroutine in the names-
pace. The :nsentryX:nsentry subroutine modifier> modifier
stores the subroutine in the currenly active namespace with a
different name. For example, Parrot will store this subroutine
in the current namespace as bar, not foo:

.sub 'foo' :nsentry('bar')

#...

.end

Chapter 7 on “Classes and Objects” explains other subroutine
modifiers.

Parameters and Arguments
The .param directive defines the parameters for the subrou-
tine and creates local named variables for them (similar to
.local):

.param int c

The .return directive returns control flow to the calling sub-
routine. To return results, pass them as arguments to .return.

.return($P0)

This example implements the factorial algorithm using two
subroutines, main and fact:

factorial.pir

.sub 'main' :main

.local int count

.local int product

count = 5

product = 1

$I0 = 'fact'(count, product)

57

Parrot Developer’s Guide: PIR

say $I0

.end

.sub 'fact'

.param int c

.param int p

loop:

if c <= 1 goto fin

p = c * p

dec c

branch loop

fin:

.return (p)

.end

This example defines two local named variables, count and
product, and assigns them the values 1 and 5. It calls the
fact subroutine with both variables as arguments. The fact

subroutine uses the .param directive to retrieve these param-
eters and the .return directive to return the result. The final
printed result is 120.

Positional Parameters
The default way of matching the arguments passed in a sub-
routine call to the parameters defined in the subroutine’s dec-
laration is by position. If you declare three parameters—an
integer, a number, and a string:

.sub 'foo'

.param int a

.param num b

.param string c

...

.end

. . . then calls to this subroutine must also pass three arguments—
an integer, a number, and a string:

'foo'(32, 5.9, "bar")

58

Chapter 6. Subroutines

Parrot will assign each argument to the corresponding param-
eter in order from first to last. Changing the order of the argu-
ments or leaving one out is an error.

Named Parameters
Named parameters are an alternative to positional parameters.
Instead of passing parameters by their position in the string,
Parrot assigns arguments to parameters by their name. Conse-
quencly you may pass named parameters in any order. Declare
named parameters with with the :named modifier.

This example declares two named parameters in the sub-
routine shoutout—name and years—each declared with the
:named modifier and followed by the name to use when pass
arguments. The string name can match the parameter name (as
with the name parameter), but it can also be different (as with
the years parameter):
.sub 'shoutout'

.param string name :named("name")

.param string years :named("age")

$S0 = "Hello " . name

$S1 = "You are " . years

$S1 .= " years old"

say $S0

say $S1

.end

Pass named arguments to a subroutine as a series of name/value
pairs, with the elements of each pair separated by an arrow =>.
.sub 'main' :main

'shoutout'("age" => 42, "name" => "Bob")

.end

The order of the arguments does not matter:
.sub 'main' :main

'shoutout'("name" => "Bob", "age" => 42)

.end

59

Parrot Developer’s Guide: PIR

Optional Parameters
Another alternative to the required positional parameters is op-
tional parameters. Some parameters are unnecessary for cer-
tain calls. Parameters marked with the :optional modifier
do not produce errors about invalid parameter counts if they
are not present. A subroutine with optional parameters should
gracefully handle the missing argument, either by providing a
default value or by performing an alternate action that doesn’t
need that value.

Checking the value of the optional parameter isn’t enough
to know whether the call passed such an argument, because
the user might have passed a null or false value intentionally.
PIR also provides an :opt_flag modifier for a boolean check
whether the caller passed an argument:

.param string name :optional

.param int has_name :opt_flag

When an integer parameter with the :opt_flag modifier im-
mediately follows an :optional parameter, it will be true if
the caller passed the argument and false otherwise.

This example demonstrates how to provide a default value
for an optional parameter:

.param string name :optional

.param int has_name :opt_flag

if has_name goto we_have_a_name

name = "default value"

we_have_a_name:

When the has_name parameter is true, the if control state-
ment jumps to the we_have_a_name label, leaving the name

parameter unmodified. When has_name is false (when the
caller passed no argument for name) the if statement does

60

Chapter 6. Subroutines

nothing. The next line sets the name parameter to a default
value.

The :opt_flag parameter never takes an argument from
the passed-in argument list. It’s purely for bookkeeping within
the subroutine.

Optional parameters can be positional or named parame-
ters. Optional parameters must appear at the end of the list
of positional parameters after all the required parameters. An
optional parameter must immediately precede its :opt_flag
parameter whether it’s named or positional:

.sub 'question'

.param int value :named("answer") :optional

.param int has_value :opt_flag

#...

.end

You can call this subroutine with a named argument or with no
argument:

'question'("answer" => 42)

'question'()

Aggregating Parameters
Another alternative to a sequence of positional parameters is
an aggregating parameter which bundles a list of arguments
into a single parameter. The :slurpy modifier creates a single
array parameter containing all the provided arguments:

.param pmc args :slurpy

$P0 = args[0] # first argument

$P1 = args[1] # second argument

As an aggregating parameter will consume all subsequent pa-
rameters, you may use an aggregating parameter with other
positional parameters only after all other positional parame-
ters:

61

Parrot Developer’s Guide: PIR

.param string first

.param int second

.param pmc the_rest :slurpy

$P0 = the_rest[0] # third argument

$P1 = the_rest[1] # fourth argument

When you combine :named and :slurpy on a parameter, the
result is a single associative array containing the named argu-
ments passed into the subroutine call:
.param pmc all_named :slurpy :named

$P0 = all_named['name'] # 'name' => 'Bob'

$P1 = all_named['age'] # 'age' => 42

Flattening Arguments
A flattening argument breaks up a single argument to fill mul-
tiple parameters. It’s the complement of an aggregating pa-
rameter. The :flat modifier splits arguments (and return val-
ues) into a flattened list. Passing an array PMC to a subroutine
with :flat:
$P0 = new "ResizablePMCArray"

$P0[0] = "Bob"

$P0[1] = 42

'foo'($P0 :flat)

. . . allows the elements of that array to fill the required param-
eters:
.param string name # Bob

.param int age # 42

Arguments on the Command Line
Arguments passed to a PIR program on the command line are
available to the :main subroutine of that program as strings
in a ResizableStringArray PMC. If you call a program
args.pir, passing it three arguments:

62

Chapter 6. Subroutines

$ parrot args.pir foo bar baz

. . . they will be accesible at index 1, 2, and 3 of the PMC pa-
rameter.2

.sub 'main' :main

.param pmc all_args

$S1 = all_args[1] # foo

$S2 = all_args[2] # bar

$S3 = all_args[3] # baz

...

.end

Because all_args is a ResizableStringArray PMC, you
can loop over the results, access them individually, or even
modify them.

Compiling and Loading Libraries
In addition to running PIR files on the command-line, you can
also load a library of pre-compiled bytecode directly into your
PIR source file. The load_bytecode opcode takes a single
argument: the name of the bytecode file to load. If you create
a file named foo_file.pir containing a single subroutine:

foo_file.pir

.sub 'foo_sub' # .sub stores a global sub

say "in foo_sub"

.end

. . . and compile it to bytecode using the -o command-line switch:

$ parrot -o foo_file.pbc foo_file.pir

. . . you can then load the compiled bytecode into main.pir and
directly call the subroutine defined in foo_file.pir:

2Index 0 is unused.

63

Parrot Developer’s Guide: PIR

main.pir

.sub 'main' :main

load_bytecode "foo_file.pbc" # compiled foo_file.pir

foo_sub()

.end

The load_bytecode opcode also works with source files, as
long as Parrot has a compiler registered for that type of file:

main2.pir

.sub 'main' :main

load_bytecode "foo_file.pir" # PIR source code

foo_sub()

.end

Sub PMC
Subroutines are a PMC type in Parrot. You can store them in
PMC registers and manipulate them just as you do with other
PMCs. Parrot stores subroutines in namespaces; retrieve them
with the get_global opcode:

$P0 = get_global "my_sub"

To find a subroutine in a different namespace, first look up
the appropriate the namespace object, then use that as the first
parameter to get_global:

$P0 = get_namespace ["My";"Namespace"]

$P1 = get_global $P0, "my_sub"

You can invoke a Sub object directly:

$P0(1, 2, 3)

You can get or even change its name:

$S0 = $P0 # Get the current name

$P0 = "my_new_sub" # Set a new name

You can get a hash of the complete metadata for the subrou-
tine:

64

Chapter 6. Subroutines

$P1 = inspect $P0

. . . which contains the fields:

• pos_required

The number of required positional parameters

• pos_optional

The number of optional positional parameters

• named_required

The number of required named parameters

• named_optional

The number of optional named parameters

• pos_slurpy

True if the sub has an aggregating parameter for posi-
tional args

• named_slurpy

True if the sub has an aggregating parameter for named
args

Instead of fetching the entire inspection hash, you can also
request individual pieces of metadata:
$P0 = inspect $P0, "pos_required"

The arity method on the sub object returns the total number
of defined parameters of all varieties:
$I0 = $P0.'arity'()

The get_namespace method on the sub object fetches the
namespace PMC which contains the Sub:
$P1 = $P0.'get_namespace'()

65

Parrot Developer’s Guide: PIR

Evaluating a Code String
One way of producing a code object during a running program
is by compiling a code string. In this case, it’s a bytecode
segment object.

The first step is to fetch a compiler object for the target
language:

$P1 = compreg "PIR"

Parrot registers a compiler for PIR by default, so it’s always
available. The following example fetches a compiler object
for PIR and places it in the named variable compiler. It then
generates a code object from a string by calling compiler as
a subroutine and places the resulting bytecode segment object
into the named variable generated and then invokes it as a
subroutine:

.local pmc compiler, generated

.local string source

source = ".sub foo\n$S1 = 'in eval'\nprint $S1\n.end"

compiler = compreg "PIR"

generated = compiler(source)

generated()

say "back again"

You can register a compiler or assembler for any language in-
side the Parrot core and use it to compile and invoke code from
that language.

In the following example, the compreg opcode registers
the subroutine-like object $P10 as a compiler for the language
“MyLanguage”:

compreg "MyLanguage", $P10

66

Chapter 6. Subroutines

Lexicals
Variables stored in a namespace are global variables. They’re
accessible from anywhere in the program if you specify the
right namespace path. High-level languages also have lexical
variables which are only accessible from the local section of
code (or scope) where they appear, or in a section of code em-
bedded within that scope.3 In PIR, the section of code between
a .sub and a .end defines a scope for lexical variables.

While Parrot stores global variables in namespaces, it stores
lexical variables in lexical pads4. Each lexical scope has its
own pad. The store_lex opcode stores a lexical variable in
the current pad. The find_lex opcode retrieves a variable
from the current pad:

$P0 = new "Integer" # create a variable

$P0 = 10 # assign value to it

store_lex "foo", $P0 # store with lexical name "foo"

...

$P1 = find_lex "foo" # get the lexical "foo" into $P1

say $P1 # prints 10

The .lex directive defines a local variable that follows these
scoping rules:

.local int foo

.lex 'foo', foo

LexPad and LexInfo PMCs
Parrot uses two different PMCs to store information about a
subroutine’s lexical variables: the LexPad PMC and the Lex-
Info PMC. Neither of these PMC types are usable directly

3A scope is roughly equivalent to a block in C.
4Think of a pad like a box to hold a collection of lexical variables.

67

Parrot Developer’s Guide: PIR

from PIR code; Parrot uses them internally to store informa-
tion about lexical variables.

LexInfo PMCs store information about lexical variables
at compile time. Parrot generates this read-only information
during compilation to represent what it knows about lexical
variables. Not all subroutines get a LexInfo PMC by de-
fault; subroutines need to indicate to Parrot that they require
a LexInfo PMC. One way to do this is with the .lex direc-
tive. Of course, the .lex directive only works for languages
that know the names of there lexical variables at compile time.
Languages where this information is not available can mark
the subroutine with :lex instead.

LexPad PMCs store run-time information about lexical
variables. This includes their current values and type infor-
mation. Parrot creates a new LexPad PMC for subs that have
a LexInfo PMC already. It does so for each invocation of the
subroutine, which allows for recursive subroutine calls with-
out overwriting lexical variables.

The get_lexinfo method on a sub retrieves its associated
LexInfo PMC:

$P0 = get_global "MySubroutine"

$P1 = $P0.'get_lexinfo'()

The LexInfo PMC supports a few introspection operations.
The elements opcode retrieves the number of elements it con-
tains. String key access operations retrieve entries from the
LexInfo PMC as if it were an associative array.

$I0 = elements $P1 # number of lexical variables

$P0 = $P1["name"] # lexical variable "name"

There is no easy way to retrieve the current LexPad PMC in a
given subroutine, but they are of limited use in PIR.

68

Chapter 6. Subroutines

Nested Scopes
PIR has no separate syntax for blocks or lexical scopes; sub-
routines define lexical scopes in PIR. Because PIR disallows
nested .sub/.end declarations, it needs a way to identify which
lexical scopes are the parents of inner lexical scopes. The
:outer modifier declares a subroutine as a nested inner lex-
ical scope of another existing subroutine. The modifier takes
one argument, the name of the outer subroutine:

.sub 'foo'

defines lexical variables

.end

.sub 'bar' :outer('foo')

can access foo's lexical variables

.end

Sometimes a name alone isn’t sufficient to uniquely identify
the outer subroutine. The :subid modifier allows the outer
subroutine to declare a truly unique name usable with :outer:

.sub 'foo' :subid('barsouter')

defines lexical variables

.end

.sub 'bar' :outer('barsouter')

can access foo's lexical variables

.end

The get_outer method on a Sub PMC retrieves its :outer

sub.

$P1 = $P0.'get_outer'()

If there is no :outer sub, this will return a null PMC. The
set_outer method on a Sub object sets the :outer sub:

$P0.'set_outer'($P1)

69

Parrot Developer’s Guide: PIR

Scope and Visibility
High-level languages such as Perl, Python, and Ruby allow
nested scopes, or blocks within blocks that have their own lex-
ical variables. This construct is common even in C:

{

int x = 0;

int y = 1;

{

int z = 2;

/* x, y, and z are all visible here */

}

/* only x and y are visible here */

}

In the inner block, all three variables are visible. The variable
z is only visible inside that block. The outer block has no
knowledge of z. A naïve translation of this code to PIR might
be:

.param int x

.param int y

.param int z

x = 0

y = 1

z = 2

#...

This PIR code is similar, but the handling of the variable z is
different: z is visible throughout the entire current subroutine.
It was not visible throughout the entire C function. A more
accurate translation of the C scopes uses :outer PIR subrou-
tines instead:

.sub 'MyOuter'

.local pmc x, y

.lex 'x', x

.lex 'y', y

x = new 'Integer'

70

Chapter 6. Subroutines

x = 10

'MyInner'()

only x and y are visible here

say y # prints 20

.end

.sub 'MyInner' :outer('MyOuter')

.local pmc x, new_y, z

.lex 'z', z

find_lex x, 'x'

say x # prints 10

new_y = new 'Integer'

new_y = 20

store_lex 'y', new_y

.end

The find_lex and store_lex opcodes don’t just access the
value of a variable directly in the scope where it’s declared,
they interact with the LexPad PMC to find lexical variables
within outer lexical scopes. All lexical variables from an outer
lexical scope are visible from the inner lexical scope.

Note that you can only store PMCs—not primitive types—
as lexicals.

Multiple Dispatch
Multiple dispatch subroutines (or multis) have several variants
with the same name but different sets of parameters. The set
of parameters for a subroutine is its signature. When a multi is
called, the dispatch operation compares the arguments passed
in to the signatures of all the variants and invokes the subrou-
tine with the best match.

Parrot stores all multiple dispatch subs with the same name
in a namespace within a single PMC called a MultiSub. The
MultiSub is an invokable list of subroutines. When a multiple
dispatch sub is called, the MultiSub PMC searches its list of
variants for the best matching candidate.

71

Parrot Developer’s Guide: PIR

The :multi modifier on a .sub declares a MultiSub:

.sub 'MyMulti' :multi()

does whatever a MyMulti does

.end

Each variant in a MultiSub must have a unique type or num-
ber of parameters declared, so the dispatcher can calculate a
best match. If you had two variants that both took four inte-
ger parameters, the dispatcher would never be able to decide
which one to call when it received four integer arguments.

The :multimodifier takes one or more arguments defining
the multi signature. The multi signature tells Parrot what par-
ticular combination of input parameters the multi accepts:

.sub 'Add' :multi(I, I)

.param int x

.param int y

$I0 = x + y

.return($I0)

.end

.sub 'Add' :multi(N, N)

.param num x

.param num y

$N0 = x + y

.return($N0)

.end

.sub 'Start' :main

$I0 = Add(1, 2) # 3

$N0 = Add(3.14, 2.0) # 5.14

$S0 = Add("a", "b") # ERROR! No (S, S) variant!

.end

Multis can take I, N, S, and P types, but they can also use _

(underscore) to denote a wildcard, and a string which names a
PMC type:

.sub 'Add' :multi(I, I) # two integers

#...

72

Chapter 6. Subroutines

.end

.sub 'Add' :multi(I, 'Float') # integer and Float PMC

#...

.end

.sub 'Add' :multi('Integer', _) # Integer PMC and wildcard

#...

.end

When you call a MultiSub, Parrot will try to take the most
specific best-match variant, but will fall back to more general
variants if it cannot find a perfect match. If you call Add with
(1, 2), Parrot will dispatch to the (I, I) variant. If you call
it with (1, �hi�), Parrot will match the (I, _) variant, as
the string in the second argument doesn’t match I or Float.
Parrot can also promote one of the I, N, or S values to an Inte-
ger, Float, or String PMC.

To make the decision about which multi variant to call,
Parrot calculates the Manhattan Distance between the argu-
ment signature and the parameter signature of each variant.
Every difference between each element counts as one step.
A difference can be a promotion from a primitive type to a
PMC, the conversion from one primitive type to another, or
the matching of an argument to a _ wildcard. After Parrot cal-
culates the distance to each variant, it calls the one with the
lowest distance. Notice that it’s possible to define a variant
that is impossible to call: for every potential combination of
arguments there is a better match. This is uncommon, but pos-
sible in systems with many multis and a limited number of
data types.

73

Parrot Developer’s Guide: PIR

Continuations
Continuations are subroutines that take snapshots of control
flow. They are frozen images of the current execution state
of the VM. Once you have a continuation, you can invoke it to
return to the point where the continuation was first created. It’s
like a magical timewarp that allows the developer to arbitrarily
move control flow back to any previous point in the program.

Continuations are like any other PMC; create one with the
new opcode:
$P0 = new 'Continuation'

The new continuation starts in an undefined state. If you at-
tempt to invoke a new continuation without initializing it, Par-
rot will throw an exception. To prepare the continuation for
use, assign it a destination label with the set_addr opcode:

$P0 = new 'Continuation'

set_addr $P0, my_label

my_label:

...

To jump to the continuation’s stored label and return the con-
text to the state it was in at the point of its creation, invoke the
continuation:
$P0()

Even though you can use the subroutine call notation $P0() to
invoke the continuation, you cannot pass arguments or obtain
return values.

Continuation Passing Style
Parrot uses continuations internally for control flow. When
Parrot invokes a subroutine, it creates a continuation represent-
ing the current point in the program. It passes this continuation

74

Chapter 6. Subroutines

as an invisible parameter to the subroutine call. To return from
that subroutine, Parrot invokes the continuation to return to the
point of creation of that continuation. If you have a continu-
ation, you can invoke it to return to its point of creation any
time you want.

This type of flow control—invoking continuations instead
of performing bare jumps—is called Continuation Passing Style
(CPS).

Tailcalls
Many subroutines set up and call another subroutine and then
return the result of the second call directly. This is a tailcall,
and is an important opportunity for optimization. Here’s a con-
trived example in pseudocode:

call add_two(5)

subroutine add_two(value)

value = add_one(value)

return add_one(value)

In this example, the subroutine add_two makes two calls to
add_one. The second call to add_one is the return value.
add_one gets called; its result gets returned to the caller of
add_two. Nothing in add_two uses that return value directly.

A simple optimization is available for this type of code.
The second call to add_one can return to the same place that
add_two returns; it’s perfectly safe and correct to use the same
return continuation that add_two uses. The two subroutine
calls can share a return continuation.

PIR provides the .tailcall directive to identify similar
situations. Use it in place of the .return directive. .tailcall
performs this optimization by reusing the return continuation
of the parent subroutine to make the tailcall:

75

Parrot Developer’s Guide: PIR

.sub 'main' :main

.local int value

value = add_two(5)

say value

.end

.sub 'add_two'

.param int value

.local int val2

val2 = add_one(value)

.tailcall add_one(val2)

.end

.sub 'add_one'

.param int a

.local int b

b = a + 1

.return (b)

.end

This example prints the correct value 7.

Coroutines
Coroutines are similar to subroutines except that they have an
internal notion of state. In addition to performing a normal
.return to return control flow back to the caller and destroy
the execution environment of the subroutine, coroutines may
also perform a .yield operation. .yield returns a value to
the caller like .return can, but it does not destroy the exe-
cution state of the coroutine. The next call to the coroutine
continues execution from the point of the last .yield, not at
the beginning of the coroutine.

Inside a coroutine continuing from a .yield, the entire ex-
ecution environment is the same as it was when the coroutine
.yielded. This means that the parameter values don’t change,
even if the next invocation of the coroutine had different argu-
ments passed in.

76

Chapter 6. Subroutines

Coroutines look like ordinary subroutines. They do not re-
quire any special modifier or any special syntax to mark them
as being a coroutine. What sets them apart is the use of the
.yield directive. .yield plays several roles:

• Identifies coroutines

When Parrot sees a .yield, it knows to create a Corou-
tine PMC object instead of a Sub PMC.

• Creates a continuation

.yield creates a continuation in the coroutine and stores
the continuation object in the coroutine object for later
resuming from the point of the .yield.

• Returns a value

.yield can return a value 5 to the caller. It is basically
the same as a .return in this regard.

Here is a simple coroutine example:

.sub 'MyCoro'

.yield(1)

.yield(2)

.yield(3)

.return(4)

.end

.sub 'main' :main

$I0 = MyCoro() # 1

$I0 = MyCoro() # 2

$I0 = MyCoro() # 3

$I0 = MyCoro() # 4

$I0 = MyCoro() # 1

$I0 = MyCoro() # 2

$I0 = MyCoro() # 3

5. . . or many values, or no values.

77

Parrot Developer’s Guide: PIR

$I0 = MyCoro() # 4

$I0 = MyCoro() # 1

$I0 = MyCoro() # 2

$I0 = MyCoro() # 3

$I0 = MyCoro() # 4

.end

This contrived example demonstrates how the coroutine stores
its state. When Parrot encounters the .yield, the coroutine
stores its current execution environment. At the next call to
the coroutine, it picks up where it left off.

Native Call Interface
The Native Call Interface (NCI) is a special version of the Par-
rot calling conventions for calling functions in shared C li-
braries with a known signature. This is a simplified version of
the first test in t/pmc/nci.t:

.local pmc library

library = loadlib "libnci_test" # library object

say "loaded"

.local pmc ddfunc

ddfunc = dlfunc library, "nci_dd", "dd" # function object

say "dlfunced"

.local num result

result = ddfunc(4.0) # call the function

ne result, 8.0, nok_1

say "ok 1"

end

nok_1:

say "not ok 1"

#...

This example shows two new opcodes: loadlib and dlfunc.
The loadlib opcode obtains a handle for a shared library. It

78

Chapter 6. Subroutines

searches for the shared library in the current directory, in run-
time/parrot/dynext, and in a few other configured directories.
It also tries to load the provided filename unaltered and with
appended extensions like .so or .dll. Which extensions it tries
depends on the operating system Parrot is running on.

The dlfunc opcode gets a function object from a previ-
ously loaded library (second argument) of a specified name
(third argument) with a known function signature (fourth ar-
gument). The function signature is a string where the first
character is the return value and the rest of the parameters are
the function parameters. Table 6-1 lists the characters used in
NCI function signatures.

79

Parrot Developer’s Guide: PIR

Table 6.1: Function signature letters

Character Register C type
v - void (no return value)
c I char
s I short
i I int
l I long
f N float
d N double
t S char *
p P void * (or other pointer)
I - Parrot_Interp *interpreter
C - a callback function pointer
D - a callback function pointer
Y P the subroutine C or D calls into
Z P the argument for Y

80

CHAPTER7
Classes and Objects
Many of Parrot’s core classes—such as Integer, String,
or ResizablePMCArray—are written in C, but you can also
write your own classes in PIR. PIR doesn’t have the shiny syn-
tax of high-level object-oriented languages, but it provides the
necessary features to construct well-behaved objects every bit
as powerful as those of high-level object systems.

Parrot developers often use the word “PMCs” to refer to
the objects defined in C classes and “objects” to refer to the
objects defined in PIR. In truth, all PMCs are objects and all
objects are PMCs, so the distinction is a community tradition
with no official meaning.

Class Declaration
The newclass opcode defines a new class. It takes a single
argument, the name of the class to define.

$P0 = newclass 'Foo'

Just as with Parrot’s core classes, the new opcode instantiates
a new object of a named class.
$P1 = new 'Foo'

In addition to a string name for the class, new can also instan-
tiate an object from a class object or from a keyed namespace
name.

81

Parrot Developer’s Guide: PIR

$P0 = newclass 'Foo'

$P1 = new $P0

$P2 = new ['Bar';'Baz']

Attributes
The addattribute opcode defines a named attribute—or in-
stance variable—in the class:

$P0 = newclass 'Foo'

addattribute $P0, 'bar'

The setattribute opcode sets the value of a declared at-
tribute. You must declare an attribute before you may set it.
The value of an attribute is always a PMC, never an integer,
number, or string.1

$P6 = box 42

setattribute $P1, 'bar', $P6

The getattribute opcode fetches the value of a named at-
tribute. It takes an object and an attribute name as arguments
and returns the attribute PMC:

$P10 = getattribute $P1, 'bar'

Because PMCs are containers, you may modify an object’s
attribute by retrieving the attribute PMC and modifying its
value. You don’t need to call setattribute for the change to
stick:

$P10 = getattribute $P1, 'bar'

$P10 = 5

1Though it can be an Integer, Number, or String PMC.

82

Chapter 7. Classes and Objects

Methods
Methods in PIR are subroutines stored in the class object. Define
a method with the .sub directive and the :method modifier:

.sub half :method

$P0 = getattribute self, 'bar'

$P1 = $P0 / 2

.return($P1)

.end

This method returns the integer value of the bar attribute of
the object divided by two. Notice that the code never declares
the named variable self. Methods always make the invo-
cant object—the object on which the method was invoked—
available in a local variable called self.

The :method modifier adds the subroutine to the class ob-
ject associated with the currently selected namespace, so every
class definition file must contain a .namespace declaration.
Class files for languages may also contain an .HLL declara-
tion to associate the namespace with the appropriate high-level
language:

.HLL 'php'

.namespace ['Foo']

Method calls in PIR use a period (.) to separate the object
from the method name. The method name is either a literal
string in quotes or a string variable. The method call looks up
the method in the invocant object using the string name:

$P0 = $P1.'half'()

$S2 = 'double'

$P0 = $P1.$S2()

You can also pass a method object to the method call instead
of looking it up by string name:

83

Parrot Developer’s Guide: PIR

$P2 = get_global 'triple'

$P0 = $P1.$P2()

Parrot always treats a PMC used in the method position as a
method object, so you can’t pass a String PMC as the method
name.

Methods can have multiple arguments and multiple return
values just like subroutines:
($P0, $S1) = $P2.'method'($I3, $P4)

The can opcode checks whether an object has a particular
method. It returns 0 (false) or 1 (true):

$I0 = can $P3, 'add'

Inheritance
The subclass opcode creates a new class that inherits meth-
ods and attributes from another class. It takes two arguments:
the name of the parent class and the name of the new class:

$P3 = subclass 'Foo', 'Bar'

subclass can also take a class object as the parent class in-
stead of a class name:

$P3 = subclass $P2, 'Bar'

The addparent opcode also adds a parent class to a sub-
class. This is especially useful for multiple inheritance, as the
subclass opcode only accepts a single parent class:
$P4 = newclass 'Baz'

addparent $P3, $P4

addparent $P3, $P5

To override an inherited method in the child class, define a
method with the same name in the subclass. This example
code overrides Bar’s who_am_imethod to return a more mean-
ingful name:

84

Chapter 7. Classes and Objects

.namespace ['Bar']

.sub 'who_am_i' :method

.return('I am proud to be a Bar')

.end

Object creation for subclasses is the same as for ordinary classes:

$P5 = new 'Bar'

Calls to inherited methods are just like calls to methods defined
in the class:

$P1.'increment'()

The isa opcode checks whether an object is an instance of or
inherits from a particular class. It returns 0 (false) or 1 (true):

$I0 = isa $P3, 'Foo'

$I0 = isa $P3, 'Bar'

Overriding Vtable Functions
The Object PMC is a core PMC written in C that provides ba-
sic object-like behavior. Every object instantiated from a PIR
class inherits a default set of vtable functions from Object,
but you can override them with your own PIR subroutines.

The :vtablemodifier marks a subroutine as a vtable over-
ride. As it does with methods, Parrot stores vtable overrides in
the class associated with the currently selected namespace:

.sub 'init' :vtable

$P6 = new 'Integer'

setattribute self, 'bar', $P6

.return()

.end

Subroutines acting as vtable overrides must either have the
name of an actual vtable function or include the vtable func-
tion name in the :vtable modifier:

85

Parrot Developer’s Guide: PIR

.sub foozle :vtable('init')

...

.end

You must call methods on objects explicitly, but Parrot calls
vtable functions implicitly in multiple contexts. For example,
creating a new object with $P3 = new 'Foo' will call init
with the new Foo object.

As an example of some of the common vtable overrides,
the = operator (or set opcode) calls Foo’s vtable function
set_integer_native when its left-hand side is a Foo object
and the argument is an integer literal or integer variable:

$P3 = 30

The + operator (or add opcode) calls Foo’s add vtable function
when it adds two Foo objects:

$P3 = new 'Foo'

$P3 = 3

$P4 = new 'Foo'

$P4 = 1774

$P5 = $P3 + $P4

or:

add $P5, $P3, $P4

The inc opcode calls Foo’s increment vtable function when
it increments a Foo object:

inc $P3

Parrot calls Foo’s get_integer and get_string vtable func-
tions to retrieve an integer or string value from a Foo object:

$I10 = $P5 # get_integer

say $P5 # get_string

86

Chapter 7. Classes and Objects

Introspection
Classes defined in PIR using the newclass opcode are in-
stances of the Class PMC. This PMC contains all the meta-
information for the class, such as attribute definitions, meth-
ods, vtable overrides, and its inheritance hierarchy. The op-
code inspect provides a way to peek behind the curtain of
encapsulation to see what makes a class tick. When called
with no arguments, inspect returns an associative array con-
taining data on all characteristics of the class that it chooses to
reveal:

$P1 = inspect $P0

$P2 = $P1['attributes']

When called with a string argument, inspect only returns the
data for a specific characteristic of the class:

$P0 = inspect $P1, 'parents'

Table 7-1 shows the introspection characteristics supported by
inspect.

87

Parrot Developer’s Guide: PIR

Table 7.1: Class Introspection

Characteristic Description
attributes Information about the attributes the

class will instantiate in its objects.
An associative array, where the
keys are the attribute names and the
values are hashes of metadata.

flags An Integer PMC containing any
integer flags set on the class object.

methods A list of methods provided by the
class. An associative array where
the keys are the method names and
the values are the invocable method
objects.

name A String PMC containing the
name of the class.

namespace The NameSpace PMC associated
with the class.

parents An array of Class objects that
this class inherits from directly (via
subclass or add_parent). Does
not include indirectly inherited par-
ents.

roles An array of Role objects composed
into the class.

vtable_overrides A list of vtable overrides defined
by the class. An associative array
where the keys are the vtable names
and the values are the invocable sub
objects.

88

CHAPTER8
I/O
Parrot handles all I/O in Parrot with a set of PMCs. The
FileHandle PMC takes care of reading from and writing to
files and file-like streams. The Socket PMC takes care of
network I/O.

FileHandle Opcodes
The open opcode opens a new filehandle. It takes a string
argument, which is the path to the file:

$P0 = open 'my/file/name.txt'

By default, it opens the filehandle as read-only, but an optional
second string argument can specify the mode for the file. The
modes are r for read, w for write, a for append, and p for pipe:1

$P0 = open 'my/file/name.txt', 'a'

$P0 = open 'myfile.txt', 'r'

You can combine modes; a handle that can read and write uses
the mode string rw. A handle that can read and write but will
not overwrite the existing contents uses ra instead.

1These are the same as the C language read-modes, so may be familiar.

89

Parrot Developer’s Guide: PIR

The close opcode closes a filehandle when it’s no longer
needed. Closing a filehandle doesn’t destroy the object, it only
makes that filehandle object available for opening a different
file.2

close $P0

The print opcode prints a string argument or the string form
of an integer, number, or PMC to a filehandle:

print $P0, 'Nobody expects'

It also has a one-argument variant that always prints to stan-
dard output:

print 'the Spanish Inquisition'

The say opcode also prints to standard output, but it appends
a trailing newline to whatever it prints. Another opcode worth
mentioning is the printerr opcode, which prints an argument
to the standard error instead of standard output:

say 'Turnip'

printerr 'Blancmange'

The read and readline opcodes read values from a filehandle.
read takes an integer value and returns a string with that many
characters (if possible). readline reads a line of input from a
filehandle and returns the string without the trailing newline:

$S0 = read $P0, 10

$S0 = readline $P0

2It’s generally not a good idea to manually close the standard input, stan-
dard output, or standard error filehandles, though you can recreate them.

90

Chapter 8. I/O

The read opcode has a one-argument variant that reads from
standard input:

$S0 = read 10

The getstdin, getstdout, and getstderr opcodes fetch
the filehandle objects for the standard streams: standard input,
standard output, and standard error:
$P0 = getstdin # Standard input handle

$P1 = getstdout # Standard output handle

$P2 = getstderr # Standard error handle

Once you have the filehandle for one of the standard streams,
you can use it just like any other filehandle object:
$P0 = getstdout

print $P0, 'hello'

This following example reads data from the file myfile.txt one
line at a time using the readline opcode. As it loops over the
lines of the file, it checks the boolean value of the read-only
filehandle $P0 to test whether the filehandle has reached the
end of the file:
.sub 'main'

$P0 = getstdout

$P1 = open 'myfile.txt', 'r'

loop_top:

$S0 = readline $P1

print $P0, $S0

if $P1 goto loop_top

close $P1

.end

FileHandle Methods
The methods available on a filehandle object are mostly du-
plicates of the opcodes, though sometimes they provide more
options. Behind the scenes many of the opcodes call the file-
handle’s methods anyway, so the choice between the two is
more a matter of style preference than anything else.

91

Parrot Developer’s Guide: PIR

open
The open method opens a stream in an existing filehandle ob-
ject. It takes two optional string arguments: the name of the
file to open and the open mode.
$P0 = new 'FileHandle'

$P0.'open'('myfile.txt', 'r')

The open opcode internally creates a new filehandle PMC and
calls its open method on it. The opcode version is shorter to
write, but it also creates a new PMC for every call, while the
method can reopen an existing filehandle PMC with a new file.

When reopening a filehandle, Parrot will reuse the previ-
ous filename associated with the filehandle unless you provide
a different filename. The same goes for the mode.

close
The close method closes the filehandle. This does not destroy
the filehandle object; you can reopen it with the open method
later.
$P0.'close'()

is_closed
The is_closed method checks if the filehandle is closed. It
returns true if the filehandle has been closed or was never
opened, and false if it is currently open:
$I0 = $P0.'is_closed'()

print
The print method prints a given value to the filehandle. The
argument can be an integer, number, string, or PMC.
$P0.'print'('Hello!')

92

Chapter 8. I/O

puts
The puts method is similar to print, but it only takes a string
argument.

$P0.'puts'('Hello!')

read
The read method reads a specified number of bytes from the
filehandle object and returns them in a string.

$S0 = $P0.'read'(10)

If the remaining bytes in the filehandle are fewer than the re-
quested number of bytes, returns a string containing the re-
maining bytes.

readline
The readline method reads an entire line up to a newline
character or the end-of-file mark from the filehandle object
and returns it in a string.

$S0 = $P0.'readline'()

readline_interactive
The readline_interactive method is useful for command-
line scripts. It writes the single argument to the method as a
prompt to the screen, then reads back a line of input.

$S0 = $P0.'readline_interactive'('Please enter your name:')

93

Parrot Developer’s Guide: PIR

readall
The readall method reads an entire file. If the filehandle
is closed, it will open the file given by the passed in string
argument, read the entire file, and then close the filehandle.
$S0 = $P0.'readall'('myfile.txt')

If the filehandle is already open, readall will read the con-
tents of the file, and won’t close the filehandle when it’s finished.
Don’t pass the name argument when working with a file you’ve
already opened.
$S0 = $P0.'readall'()

mode
The mode method returns the current file access mode for the
filehandle object.
$S0 = $P0.'mode'()

encoding
The encoding method sets or retrieves the string encoding
behavior of the filehandle.
$P0.'encoding'('utf8')

$S0 = $P0.'encoding'()

See “Encodings and Charsets“ in Chapter 4 for more details
on the encodings supported in Parrot.

buffer_type
The buffer_type method sets or retrieves the buffering be-
havior of the filehandle object. The argument or return value
is one of: unbuffered to disable buffering, line-buffered
to read or write when the filehandle encounters a line ending,
or full-buffered to read or write bytes when the buffer is
full.
$P0.'buffer_type'('full-buffered')

$S0 = $P0.'buffer_type'()

94

Chapter 8. I/O

buffer_size
The buffer_size method sets or retrieves the buffer size of
the filehandle object.
$P0.'buffer_size'(1024)

$I0 = $P0.'buffer_size'()

The buffer size set on the filehandle is only a suggestion. Par-
rot may allocate a larger buffer, but it will never allocate a
smaller buffer.

flush
The flush method flushes the buffer if the filehandle object
is working in a buffered mode.
$P0.'flush'()

eof
The eofmethod checks whether a filehandle object has reached
the end of the current file. It returns true if the filehandle is at
the end of the current file and false otherwise.
$I0 = $P0.'eof'()

isatty
The isatty method returns a boolean value whether the file-
handle is a TTY terminal.
$P0.'isatty'()

get_fd
The get_fd method returns the integer file descriptor of the
current filehandle object. Not all operating systems use integer
file descriptors. Those that don’t simply return -1.
$I0 = $P0.'get_fd'()

95

CHAPTER9
Exceptions
Exceptions provide a way of subverting the normal flow of
control. Their main use is error reporting and cleanup tasks,
but sometimes exceptions are just a funny way to jump from
one code location to another one. Parrot uses a robust excep-
tion mechanism and makes it available to PIR.

Exceptions are objects that hold essential information about
an exceptional situation: the error message, the severity and
type of the error, the location of the error, and backtrace infor-
mation about the chain of calls that led to the error. Exception
handlers are ordinary subroutines, but user code never calls
them directly from within user code. Instead, Parrot invokes
an appropriate exception handler to catch a thrown exception.

Throwing Exceptions
The throw opcode throws an exception object. This example
creates a new Exception object in $P0 and throws it:

$P0 = new 'Exception'

throw $P0

Setting the string value of an exception object sets its error
message:

$P0 = new 'Exception'

96

Chapter 9. Exceptions

$P0 = "I really had my heart set on halibut."

throw $P0

Other parts of Parrot throw their own exceptions. The die

opcode throws a fatal (that is, uncatchable) exception. Many
opcodes throw exceptions to indicate error conditions. The /

operator (the div opcode), for example, throws an exception
on attempted division by zero.

When no appropriate handlers are available to catch an ex-
ception, Parrot treats it as a fatal error and exits, printing the
exception message followed by a backtrace showing the loca-
tion of the thrown exception:

I really had my heart set on halibut.

current instr.: 'main' pc 6 (pet_store.pir:4)

Catching Exceptions
Exception handlers catch exceptions, making it possible to re-
cover from errors in a controlled way, instead of terminating
the process entirely.

The push_eh opcode creates an exception handler object
and stores it in the list of currently active exception handlers.
The body of the exception handler is a labeled section of code
inside the same subroutine as the call to push_eh. The opcode
takes one argument, the name of the label:

push_eh my_handler

$P0 = new 'Exception'

throw $P0

say 'never printed'

my_handler:

say 'caught an exception'

97

Parrot Developer’s Guide: PIR

This example creates an exception handler with a destination
address of the my_handler label, then creates a new exception
and throws it. At this point, Parrot checks to see if there are any
appropriate exception handlers in the currently active list. It
finds my_handler and runs it, printing “caught an exception”.
The “never printed” line never runs, because the exceptional
control flow skips right over it.

Because Parrot scans the list of active handlers from newest
to oldest, you don’t want to leave exception handlers lying
around when you’re done with them. The pop_eh opcode re-
moves an exception handler from the list of currently active
handlers:

push_eh my_handler

$I0 = $I1 / $I2

pop_eh

say 'maybe printed'

goto skip_handler

my_handler:

say 'caught an exception'

pop_eh

skip_handler:

This example creates an exception handler my_handler and
then runs a a division operation that will throw a “division by
zero” exception if $I2 is 0. When $I2 is 0, div throws an
exceptoin. The exception handler catches it, prints “caught an
exception”, and then clears itself with pop_eh. When $I2 is
a non-zero value, there is no exception. The code clears the
exception handler with pop_eh, then prints “maybe printed”.
The goto skips over the code of the exception handler, as it’s
just a labeled unit of code within the subruotine.

98

Chapter 9. Exceptions

The exception object provides access to various attributes
of the exception for additional information about what kind
of error it was, and what might have caused it. The direc-
tive .get_results retrieves the Exception object from in-
side the handler:

my_handler:

.get_results($P0)

Not all handlers are able to handle all kinds of exceptions. If
a handler determines that it’s caught an exception it can’t han-
dle, it can rethrow the exception to the next handler in the list
of active handlers:

my_handler:

.get_results($P0)

rethrow $P0

If none of the active handlers can handle the exception, the
exception becomes a fatal error. Parrot will exit, just as if it
could find no handlers.

An exception handler creates a return continuation with a
snapshot of the current interpreter context. If the handler is
successful, it can resume running at the instruction immedi-
ately after the one that threw the exception. This resume con-
tinuation is available from the resume attribute of the excep-
tion object. To resume after the exception handler is complete,
call the resume handler like an ordinary subroutine:

my_handler:

.get_results($P0)

$P1 = $P0['resume']

$P1()

99

Parrot Developer’s Guide: PIR

Exception PMC
Exception objects contain several useful pieces of informa-
tion about the exception. To set and retrieve the exception
message, use the message key on the exception object:

$P0 = new 'Exception'

$P0['message'] = "this is an error message for the exception"

. . . or set and retrieve the string value of the exception object
directly:

$S0 = $P0

The severity and type of the exception are both integer values:

$P0['severity'] = 1

$P0['type'] = 2

The payload holds any user-defined data attached to the ex-
ception object:

$P0['payload'] = $P2

The attributes of the exception are useful in the handler for
making decisions about how and whether to handle an excep-
tion and report its results:

my_handler:

.get_results($P2)

$S0 = $P2['message']

print 'caught exception: "'

print $S0

$I0 = $P2['type']

print '", of type '

say $I0

100

Chapter 9. Exceptions

ExceptionHandler PMC
Exception handlers are subroutine-like PMC objects, derived
from Parrot’s Continuation type. When you use push_eh

with a label to create an exception handler, Parrot creates the
handler PMC for you. You can also create it directly by cre-
ating a new ExceptionHandler object, and setting its desti-
nation address to the label of the handler using the set_addr

opcode:
$P0 = new 'ExceptionHandler'

set_addr $P0, my_handler

push_eh $P0

...

my_handler:

...

ExceptionHandler PMCs have several methods for setting
or checking handler attributes. The can_handle method re-
ports whether the handler is willing or able to handle a partic-
ular exception. It takes one argument, the exception object to
test:
$I0 = $P0.'can_handle'($P1)

The min_severity and max_severity methods set and re-
trieve the severity attributes of the handler, allowing it to refuse
to handle any exceptions whose severity is too high or too low.
Both take a single optional integer argument to set the severity;
both return the current value of the attribute as a result:
$P0.'min_severity'(5)

$I0 = $P0.'max_severity'()

The handle_types and handle_types_except methods tell
the exception handler what types of exceptions it should or
shouldn’t handle. Both take a list of integer types, which cor-
respond to the type attribute set on an exception object:

101

Parrot Developer’s Guide: PIR

$P0.'handle_types'(5, 78, 42)

The following example creates an exception handler that only
handles exception types 1 and 2. Instead of having push_eh

create the exception handler object, it creates a new Excep-

tionHandler object manually. It then calls handle_types

to identify the exception types it will handle:

$P0 = new 'ExceptionHandler'

set_addr $P0, my_handler

$P0.'handle_types'(1, 2)

push_eh $P0

This handler can only handle exception objects with a type of
1 or 2. Parrot will skip over this handler for all other exception
types.

$P1 = new 'Exception'

$P1['type'] = 2

throw $P1 # caught

$P1 = new 'Exception'

$P1['type'] = 3

throw $P1 # uncaught

Annotations
Annotations are pieces of metadata code stored in a bytecode
file. This is especially important when dealing with high-level
languages, where annotations contain information about the
HLL’s source code such as the current line number and file
name.

Create an annotation with the .annotate directive. An-
notations consist of a key/value pair, where the key is a string
and the value is an integer, a number, or a string. Bytecode
stores annotations as constants in the compiled bytecode. Con-
sequently, you may not store PMCs.

102

Chapter 9. Exceptions

.annotate 'file', 'mysource.lang'

.annotate 'line', 42

.annotate 'compiletime', 0.3456

Annotations exist, or are “in force” throughout the entire sub-
routine or until their redefinition. Creating a new annotation
with the same name as an old one overwrites it with the new
value. The annotations opcode retrieves the current hash of
annotations:

.annotate 'line', 1

$P0 = annotations # {'line' => 1}

.annotate 'line', 2

$P0 = annotations # {'line' => 2}

To retrieve a single annotation by name, use the name with
annotations:

$P0 = annotations 'line'

Exception objects contain information about the annotations
that were in force when the exception was thrown. Retrieve
them with the annotations method on the exception PMC
object:

$I0 = $P0.'annotations'('line') # only the 'line' annotation

$P1 = $P0.'annotations'() # hash of all annotations

Exceptions can also include a backtrace to display the program
flow to the point of the throw:

$P1 = $P0.'backtrace'()

The backtrace PMC is an array of hashes. Each element in the
array corresponds to a function in the current call chain. Each
hash has two elements: annotation (the hash of annotations
in effect at that point) and sub (the Sub PMC of that function).

103

Index

* operator, 15
+ operator, 14, 15, 86
- operator, 15
-o command-line switch, 63
. operator, 18
.= operator, 18
.HLL directive, 43, 83
.annotate directive, 102
.end directive, 55
.get_results directive, 99
.include directive, 35
.lex directive, 67
.namespace directive, 42, 83
.param directive, 57
.pir files, 5
.return directive, 57
.sub directive, 55
.tailcall directive, 75
.yield directive, 77
/ operator, 15
:anon subroutine modifier, 57
:flat argument modifier, 62
:immediate subroutine modifier, 56
:init subroutine modifier, 56
:load subroutine modifier, 56
:main subroutine modifier, 56
:method subroutine modifier, 83
:multi subroutine modifier, 72
:named parameter modifier, 59
:opt_flag parameter modifier, 60
:optional parameter modifier, 60

:outer subroutine modifier, 69
:postcomp subroutine modifier, 56
:slurpy parameter modifier, 61
:subid subroutine modifier, 69
:vtable subroutine modifier, 85
= operator, 13, 38, 86
#parrot (IRC channel), 2
% operator, 15

A
abs opcode, 15
acos opcode, 15
add opcode, 15, 86
add_var method, 45
addparent opcode, 84
aggregate PMCs, 31
aggregating parameters, 61
aliasing, 46
and opcode, 16, 49
annotations method, 103
annotations opcode, 103
arity method, 65
arrays, 31
ASCII character set, 27
asec opcode, 15
asin opcode, 15
assign opcode, 38
assignment, 13
associative arrays, 33
attributes, 82

104

Index

B
backtrace method, 103
band opcode, 17
bands opcode, 26
binary numeric opcodes, 15
bitwise opcodes, 17
bnot opcode, 17
boolean truth, 48
bor opcode, 17
bors opcode, 26
boxing, 29
buffer_size method, 95
buffer_type method, 94
bxor opcode, 17
bxors opcode, 26
bytecode annotations, 102
bytecode segment object, 66

C
can opcode, 84
can_handle method, 101
charset, 27
chr opcode, 21
Class PMC, 87
classes, 81

attributes, 82
inheritance, 84
introspection, 87
methods, 83

clone opcode, 38
close method, 92
close opcode, 90
code strings, evaluating, 66
command-line arguments, 62
comments, 6
comparison operators, 48
compiling, 4
conditional branch, 11, 47
constants, 9

continuation passing style (CPS),
74

continuations, 74
control structures, 10
copy-on-write, 26, 38
coroutines, 76
cos opcode, 15
cosh opcode, 15
COW (copy-on-write), 26
CPS (continuation passing style),

74

D
dec opcode, 15
delete opcode, 34
delprop opcode, 39
development cycles, 3
dictionaries, 33
die opcode, 97
directives, 8
div opcode, 15
dlfunc opcode, 79
do-while loop, 52
docs.parrot.org website, 2

E
encoding, 27
encoding method, 94
eof method, 95
escape sequences, 18
exception handlers, 97
Exception PMC, 96, 100

message, 100
payload, 100
severity, 100
type, 100

ExceptionHandler PMC, 101
exceptions, 96

catching, 97
resuming, 99

105

Parrot Developer’s Guide: PIR

throwing, 96
exchange opcode, 14
exists opcode, 34
exp opcode, 15
exsec opcode, 15

F
find_namespace method, 45
find_var method, 45
flattening arguments, 62
flush method, 95
fact opcode, 15
FileHandle PMC, 89
for loop, 53

G
gcd opcode, 15
get_bool vtable function, 16, 48
get_class method, 45
get_fd method, 95
get_global opcode, 41, 64
get_hll_global opcode, 43
get_hll_namespace opcode, 44
get_lexinfo method, 68
get_name method, 44
get_namespace method, 65
get_namespace opcode, 44
get_outer method, 69
get_parent method, 45
get_root_global opcode, 43
get_root_namespace opcode, 44
getattribute opcode, 82
getprop opcode, 39
getstderr opcode, 91
getstdin opcode, 91
getstdout opcode, 91
global variables, 41
goto instruction, 10, 47

H
handle_types method, 101
handle_types_except method, 101
Hash PMC, 33
hashes, 33
hav opcode, 15
heredocs, 18
hierarchical namespaces, 42
HLL namespaces, 43

I
if instruction, 48
inc opcode, 15, 86
index opcode, 25
inheritance, 84
inspect opcode, 64, 87
installation, 5
Integer PMC, 31
integers, 8, 14
introspection, 87
IRC channel (#parrot), 2
is_closed method, 92
isatty method, 95
ISO 8859-1 character set, 27
issue tracking (trac.parrot.org), 3
Iterator PMC, 34
iterators, 34

J
join opcode, 24

K
keys, 10, 36

L
labels, 7
Latin 1 character set, 27
lcm opcode, 15

106

Index

length opcode, 20
lexical variables, 67
LexInfo PMC, 67
LexPad PMC, 67
libraries, 63
license, 3
literals, 8
ln opcode, 15
load_bytecode opcode, 63
loadlib opcode, 78
log10 opcode, 15
log2 opcode, 15
logical opcodes, 16
lsr opcode, 17

M
mailing lists, 2
make_namespace method, 45
Manhattan Distance, 73
max_severity method, 101
methods, 83
min_severity method, 101
mod opcode, 15
mode method, 94
modifiers, 56
mul opcode, 15
multi signature, 72
multi-level keys, 36
multiple dispatch, 71
multiple inheritance, 84
MultiSub PMC, 71

N
named parameters, 59
named variables, 9
NameSpace PMC, 44
namespaces, 41

hierarchy, 42
hll, 43
root, 42

NCI (native call interface), 78
neg opcode, 15
nested lexical scopes, 69
new opcode, 81, 85
newclass opcode, 81
not opcode, 17
null opcode, 14
Number PMC, 31
numbers (floating-point), 8, 14

O
Object PMC, 85
objects, 81
online documentation (docs.parrot.org),

2
opcodes, 7
open method, 92
open opcode, 89
operators, 7
optional parameters, 60
or opcode, 16
ord opcode, 21
ordered arrays, 31
overriding vtable functions, 85

P
parrot-dev mailing list, 2
PIR syntax, 6
PMCs (Polymorphic Containers),

28
aggregate, 31
copying vs. cloning, 37
iterators, 34
properties, 39
scalar, 29

Pod documentation, 6
Polymorphic Containers (PMCs),

28
polymorphic substitution, 40
pop_eh opcode, 98

107

Parrot Developer’s Guide: PIR

positional parameters, 58
pow opcode, 15
print method, 92
print opcode, 90
printerr opcode, 90
properties, 39
prophash opcode, 40
push_eh opcode, 97
puts method, 93

R
read method, 93
read opcode, 90
readall method, 94
readline method, 93
readline opcode, 90
readline_interactive method, 93
repeat opcode, 19
resumable exceptions, 99
root namespace, 42

S
say opcode, 90
scalar PMCs, 29
scope, 67
sec opcode, 15
sech opcode, 15
self variable, 83
set opcode, 86
set_addr opcode, 74, 101
set_global opcode, 41
set_hll_global opcode, 43
set_root_global opcode, 43
setattribute, 82
setprop opcode, 39
shift opcode, 34
shl opcode, 17
shr opcode, 17
sin opcode, 15
sprintf opcode, 22

statements, 7
string escapes, 18
String PMC, 31
strings, 8, 17

concatenation, 18
formatting, 22

sub opcode, 15
Sub PMC, 64
subclass opcode, 84
subroutines, 11, 55

continuations, 74
coroutines, 76
methods, 83
modifiers, 56
parameters, 57
signatures, 71

substr opcode, 20
switch control structure, 51

T
tailcall, 75
tan opcode, 15
tanh opcode, 15
throw opcode, 96
trac.parrot.org website, 3
trigonometric opcodes, 15
type conversions, 31
typeof opcode, 28

U
UCS-2 encoding, 27
unary numeric opcodes, 15
unboxing, 30
unconditional branch, 47
unless instruction, 50
UTF-16 encoding, 27
UTF-8 encoding, 27

108

Index

V
variables, 9
vers opcode, 15
vtable functions, 40

overriding, 85

W
while loop, 53
www.parrot.org website, 2

X
xor opcode, 16

109

About the Authors

Allison Randal is chief architect and lead developer of
Parrot. In over 25 years as a programmer, she has
developed everything from games to linguistic analysis
tools, e­commerce websites, shipping fulfillment,
compilers, and database replication systems, worked as a
language designer, project manager, conference
organizer, editor, and consultant, been president and
chairman of open source software foundations, written
three books, and founded a tech publishing company.
She has a fondness for all dynamic languages, but
primarily works in C.

Also known as "Whiteknight" within the Parrot project,
Andrew Whitworth is a software engineer at Ionx,
where he designs and tests embedded D+, GPRS, and
GPS enabled tracker devices. He is a Chapters
Committee Member of the Wikimedia Foundation, and
an author/contributor on several Wikibooks, most
notably "Control Systems", "x86 Disassembly", and
"Perl 6 Programming".

The Parrot Team is a rich and diverse community. They
can be found at #parrot on irc.parrot.org and on the
parrot­dev@lists.parrot.org mailing list. This book has
received contributions from many members of the team.
Thanks especially to Will Coleda (Coke), Jerry Gay
(particle), Mark Glines (Infinoid), Bruce Gray (Util), Jim
Keenan (kid51), Moritz Lenz, Christoph Otto (cotto),
François Perrad, Bernhard Schmalhofer (Barney), Klaas­
Jan Stol (kjs), chromatic, and Stephen Weeks (Tene) for
updates, typo fixes, technical review, and example
checking.

